東京名古屋代数セミナー

過去の記録 ~09/15次回の予定今後の予定 09/16~

担当者 阿部 紀行、Aaron Chan、伊山 修、行田 康晃、中岡 宏行、高橋 亮
セミナーURL http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年05月06日(木)

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
Liran Shaul 氏 (Charles University)
Derived quotients of Cohen-Macaulay rings (English)
[ 講演概要 ]
It is well known that if A is a Cohen-Macaulay ring and $a_1,\dots,a_n$ is an $A$-regular sequence, then the quotient ring $A/(a_1,\dots,a_n)$ is also a Cohen-Macaulay ring. In this talk we explain that by deriving the quotient operation, if A is a Cohen-Macaulay ring and $a_1,\dots,a_n$ is any sequence of elements in $A$, the derived quotient of $A$ with respect to $(a_1,\dots,a_n)$ is Cohen-Macaulay. Several applications of this result are given, including a generalization of Hironaka's miracle flatness theorem to derived algebraic geometry.
[ 講演参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html