東京名古屋代数セミナー
過去の記録 ~09/12|次回の予定|今後の予定 09/13~
担当者 | 阿部 紀行、Aaron Chan、伊山 修、行田 康晃、中岡 宏行、高橋 亮 |
---|---|
セミナーURL | http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html |
2021年01月14日(木)
16:00-17:30 オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
大川 領 氏 (神戸大学)
$(-2)$ blow-up formula (Japanese)
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html
オンライン開催の詳細は下記URLをご覧ください。
大川 領 氏 (神戸大学)
$(-2)$ blow-up formula (Japanese)
[ 講演概要 ]
この講演では$A_1$特異点から定まるネクラソフ分配関数について紹介する. これは特異点解消上の枠付き連接層のモジュライにおける積分を係数とする母関数である. 特異点解消として二つ, 極小解消とスタック的な解消, つまり, 射影平面を位数$2$の巡回群で割った商スタックを考える. これら二つの特異点解消から定まるネクラソフ分配関数の関数等式について紹介する. ひとつは, 伊藤-丸吉-奥田が予想した関数等式であり, もうひとつを$(-2)$ blow-up formulaとして提案したい. 証明については細部を省略し, 望月拓郎氏による壁越え公式について基本的な例を使って紹介する。
[ 講演参考URL ]この講演では$A_1$特異点から定まるネクラソフ分配関数について紹介する. これは特異点解消上の枠付き連接層のモジュライにおける積分を係数とする母関数である. 特異点解消として二つ, 極小解消とスタック的な解消, つまり, 射影平面を位数$2$の巡回群で割った商スタックを考える. これら二つの特異点解消から定まるネクラソフ分配関数の関数等式について紹介する. ひとつは, 伊藤-丸吉-奥田が予想した関数等式であり, もうひとつを$(-2)$ blow-up formulaとして提案したい. 証明については細部を省略し, 望月拓郎氏による壁越え公式について基本的な例を使って紹介する。
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html