東京名古屋代数セミナー
過去の記録 ~12/08|次回の予定|今後の予定 12/09~
担当者 | 阿部 紀行、Aaron Chan、伊山 修、行田 康晃、中岡 宏行、高橋 亮 |
---|---|
セミナーURL | http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html |
2020年10月27日(火)
16:30-18:00 オンライン開催
オンライン開催の詳細は上記URLをご覧ください。
行田 康晃 氏 (名古屋大学)
Positive cluster complex and $\tau$-tilting complex (Japanese)
オンライン開催の詳細は上記URLをご覧ください。
行田 康晃 氏 (名古屋大学)
Positive cluster complex and $\tau$-tilting complex (Japanese)
[ 講演概要 ]
In cluster algebra theory, cluster complexes are actively studied as simplicial complexes, which represent the structure of a seed and its mutations. In this talk, I will discuss a certain subcomplex, called positive cluster complex, of a cluster complex. This is a subcomplex whose vertex set consists of all cluster variables except for those in the initial seed. I will also introduce another simplicial complex in this talk - the tau-tilting complex, which has vertices given by all indecomposable tau-rigid modules, and simplices given by basic tau-rigid modules. In the case of a cluster-tilted algebra, it turns out that a tau-tilting complex corresponds to some positive cluster complex. Due to this fact, we can investigate the structure of a tau-tilting complex of tau-tilting finite type by using the tools of cluster algebra theory. This is joint work with Haruhisa Enomoto.
In cluster algebra theory, cluster complexes are actively studied as simplicial complexes, which represent the structure of a seed and its mutations. In this talk, I will discuss a certain subcomplex, called positive cluster complex, of a cluster complex. This is a subcomplex whose vertex set consists of all cluster variables except for those in the initial seed. I will also introduce another simplicial complex in this talk - the tau-tilting complex, which has vertices given by all indecomposable tau-rigid modules, and simplices given by basic tau-rigid modules. In the case of a cluster-tilted algebra, it turns out that a tau-tilting complex corresponds to some positive cluster complex. Due to this fact, we can investigate the structure of a tau-tilting complex of tau-tilting finite type by using the tools of cluster algebra theory. This is joint work with Haruhisa Enomoto.