数値解析セミナー

過去の記録 ~10/03次回の予定今後の予定 10/04~

開催情報 火曜日 16:30~18:00 数理科学研究科棟(駒場) 002号室
担当者 齊藤宣一、柏原崇人
セミナーURL https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/

2020年06月30日(火)

16:30-18:00   オンライン開催
榊原航也 氏 (岡山理科大学理学部)
界面現象の構造保存型数値解析 (Japanese)
[ 講演概要 ]
水と油の間のように,界面は至る所に現れ,その数理解析は界面問題として盛んに研究されている.
本講演では,界面問題のうち,(i)「結晶粒界」という具体的な問題と,(ii)「移動境界問題」という一般的な枠組みのそれぞれにおいて,ある種の構造保存型数値解法を構築し解析した結果について報告する.以下,それぞれの問題について,簡単にその問題意識と得られた結果についてまとめる.

(i)結晶粒界の研究の大元の目的は,「結晶構造が与えられたとき,そこから結晶粒界の位置を捉える数学的な枠組みを構築できるか」というものである. そのためには数理モデルが必要となるが,本研究では,Kobayashi–Warren–Carter(KWC)エネルギーを自由エネルギーとして採用し,その勾配流として結晶粒界を検出することを考える. KWC エネルギーには,多様体 SO(3) に値をとる(重み付き)全変動エネルギーが現れ,この部分で強い特異性が生じるために数値計算が難しくなってしまう. 本講演の前半部分では,一般に滑らかな多様体に値が束縛された全変動流の数値解析の結果について報告し,その後に,現在行っている KWC エネルギーの数値解析の現状を簡単に報告したい.

(ii)平面閉曲線に対する移動境界問題とは,ある規則(法線速度)により時々刻々と変形する閉曲線を求める問題であり,曲率流,表面拡散流,Hele-Shaw 流など,様々な重要な問題が知られている. 多くの移動境界問題は,(何かしらの)エネルギーの(何かしらの)空間上での勾配流として定式化される(すなわち,解の時間発展に従ってエネルギーが単調減少する). よって,その勾配流の構造を活かした数値解法として構造保存型数値解法を使いたくなるのは自然な発想であると思われるが,移動境界問題のように問題領域が複雑に時間変化する場合における構造保存型数値解法の研究成果はほとんど知られていない. そこで,本講演の後半部分では,多角形曲線により界面が記述される場合の移動境界問題を扱い,エネルギー散逸構造を満たす時間離散化の方法について紹介したい. 最後には,多角形曲線ではなく滑らかな曲線により界面を記述した場合の最新の結果についてもごく簡単にご紹介する予定である.

 (i)は上坂正晃氏(東京大学),岡本潤氏(東京大学),儀我美一氏(東京大学),田口和稔氏との共同研究,(ii)は剱持智哉氏(名古屋大学),宮武勇登氏(大阪大学)との共同研究に基づく内容であり,それぞれに関連する文献として,プレプリント [1, 2] を挙げておく.
[1] Y. Giga, K. Sakakibara, K. Taguchi and M. Uesaka, A new numerical scheme for discrete constrained total variation flows and its convergence, accepted by Numerische Mathematik (arXiv:1904.06105)
[2] K. Sakakibara and Y. Miyatake, A fully discrete curve-shortening polygonal evolution law for moving boundary problems, preprint (arXiv:1912.00545)
[ 参考URL ]
https://forms.gle/ztK741vNdBT7hfGSA