トポロジー火曜セミナー
過去の記録 ~04/30|次回の予定|今後の予定 05/01~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也, 葉廣和夫 |
セミナーURL | https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2019年12月10日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
小木曽 岳義 氏 (城西大学)
q-Deformation of a continued fraction and its applications (JAPANESE)
Tea: Common Room 16:30-17:00
小木曽 岳義 氏 (城西大学)
q-Deformation of a continued fraction and its applications (JAPANESE)
[ 講演概要 ]
Morier-Genoud と Ovsienko によって連分数のある種の q-変形が導入された。このq-変形の最大の応用はそれを用いて向きづけられた有理絡み目の Jones 多項式がそれから直接求めることができることである。またこの連分数のq-変形は結び目理論への応用以外にも、2次無理数論、組み合わせ論への応用もあり、それについても紹介する。
一方、Lee-Schiffler の snake graph を用いる方法や Kogiso-Wakui による Conway-Coxeter frieze を持ちいる方法で Jones 多項式を計算するレシピが与えられている。そのことから、Morier-Genoud and Ovsienko の結果のそれらの観点からの別証明が考えられるが、それについて紹介し、さらに, Kogiso-Wakui の研究で用いた Ancestoral triangles の観点から連分数のq-変形をさらに一般化でき、連分数の cluster-variable 変形が出来ることを紹介する。
Morier-Genoud と Ovsienko によって連分数のある種の q-変形が導入された。このq-変形の最大の応用はそれを用いて向きづけられた有理絡み目の Jones 多項式がそれから直接求めることができることである。またこの連分数のq-変形は結び目理論への応用以外にも、2次無理数論、組み合わせ論への応用もあり、それについても紹介する。
一方、Lee-Schiffler の snake graph を用いる方法や Kogiso-Wakui による Conway-Coxeter frieze を持ちいる方法で Jones 多項式を計算するレシピが与えられている。そのことから、Morier-Genoud and Ovsienko の結果のそれらの観点からの別証明が考えられるが、それについて紹介し、さらに, Kogiso-Wakui の研究で用いた Ancestoral triangles の観点から連分数のq-変形をさらに一般化でき、連分数の cluster-variable 変形が出来ることを紹介する。