トポロジー火曜セミナー

過去の記録 ~11/09次回の予定今後の予定 11/10~

開催情報 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室
担当者 河澄 響矢, 北山 貴裕, 逆井卓也
セミナーURL http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html

2019年11月05日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
五味 清紀 氏 (東京工業大学)
Magnitude homology of geodesic space (JAPANESE)
[ 講演概要 ]
Magnitude is an invariant which counts `effective number of points' on a metric space. Its categorification is magnitude homology. This notion is first formulated for metric spaces associated to simple graphs by Hepworth and Willerton, and then for any metric spaces by Leinster and Shulman. The definition of the magnitude homology is easy, but its calculation is rather difficult. For example, the magnitude homology of the circle with geodesic metric was known partially. In my talk, I will explain my result that fully determines the magnitude homology of any geodesic metric space subject to a certain non-branching assumption. In this result, the magnitude homology is described in terms of geodesics. Complete and connected Riemannian manifolds are examples of the geodesic metric spaces satisfying the assumption.