トポロジー火曜セミナー
過去の記録 ~05/02|次回の予定|今後の予定 05/03~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也, 葉廣和夫 |
セミナーURL | https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2019年04月23日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
Christine Vespa 氏 (Université de Strasbourg)
Higher Hochschild homology as a functor (ENGLISH)
Tea: Common Room 16:30-17:00
Christine Vespa 氏 (Université de Strasbourg)
Higher Hochschild homology as a functor (ENGLISH)
[ 講演概要 ]
Higher Hochschild homology generalizes classical Hochschild homology for rings. Recently, Turchin and Willwacher computed higher Hochschild homology of a finite wedge of circles with coefficients in the Loday functor associated to the ring of dual numbers over the rationals. In particular, they obtained linear representations of the groups Out(F_n) which do not factorize through GL(n,Z).
In this talk, I will begin by recalling what is Hochschild homology and higher Hochschild homology. Then I will explain how viewing higher Hochschild homology of a finite wedge of circles as a functor on the category of free groups provides a conceptual framework which allows powerful tools such as exponential functors and polynomial functors to be used. In particular, this allows the generalization of the results of Turchin and Willwacher; this gives rise to new linear representations of Out(F_n) which do not factorize through GL(n,Z).
(This is joint work with Geoffrey Powell.)
Higher Hochschild homology generalizes classical Hochschild homology for rings. Recently, Turchin and Willwacher computed higher Hochschild homology of a finite wedge of circles with coefficients in the Loday functor associated to the ring of dual numbers over the rationals. In particular, they obtained linear representations of the groups Out(F_n) which do not factorize through GL(n,Z).
In this talk, I will begin by recalling what is Hochschild homology and higher Hochschild homology. Then I will explain how viewing higher Hochschild homology of a finite wedge of circles as a functor on the category of free groups provides a conceptual framework which allows powerful tools such as exponential functors and polynomial functors to be used. In particular, this allows the generalization of the results of Turchin and Willwacher; this gives rise to new linear representations of Out(F_n) which do not factorize through GL(n,Z).
(This is joint work with Geoffrey Powell.)