東京確率論セミナー
過去の記録 ~09/14|次回の予定|今後の予定 09/15~
開催情報 | 月曜日 16:00~17:30 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 佐々田槙子、中島秀太(明治大学) |
セミナーURL | https://sites.google.com/view/tokyo-probability-seminar23/2024年度 |
2018年04月23日(月)
16:00-17:30 数理科学研究科棟(駒場) 126号室
河備 浩司 氏 (慶應義塾大学経済学部)
Functional central limit theorems for non-symmetric random walks on nilpotent covering graphs (JAPANESE)
河備 浩司 氏 (慶應義塾大学経済学部)
Functional central limit theorems for non-symmetric random walks on nilpotent covering graphs (JAPANESE)
[ 講演概要 ]
ベキ零群を被覆変換群とするような有限グラフの被覆グラフのことをベキ零被覆グラフと呼ぶ。結晶格子(被覆変換群がアーベル群の場合)上のランダムウォークに関してはすでに多くの極限定理が, 離散幾何解析の枠組みで得られている。我々は以前にこれらの研究の延長としてベキ零被覆グラフ上の非対称ランダムウォークの汎関数中心極限定理を考察し,スケール極限として捉えたベキ零Lie群値拡散過程に, ランダムウォークの非対称性からくるドリフト項が現れることをいくつかの技術的な仮定の下で示した。この結果は難波氏が, 2016年7月の本セミナーで報告したが,その後, このドリフト項が実現写像のambiguityによらずに定まる事が分かっただけでなく, 従来の技術的な仮定の多くをはずすことにも成功した。時間があればラフパス理論との関連および証明の概略についても話したい。
本講演の内容は、石渡 聡 氏 (山形大) および 難波 隆弥 氏 (岡山大)との共同研究に基づく。
ベキ零群を被覆変換群とするような有限グラフの被覆グラフのことをベキ零被覆グラフと呼ぶ。結晶格子(被覆変換群がアーベル群の場合)上のランダムウォークに関してはすでに多くの極限定理が, 離散幾何解析の枠組みで得られている。我々は以前にこれらの研究の延長としてベキ零被覆グラフ上の非対称ランダムウォークの汎関数中心極限定理を考察し,スケール極限として捉えたベキ零Lie群値拡散過程に, ランダムウォークの非対称性からくるドリフト項が現れることをいくつかの技術的な仮定の下で示した。この結果は難波氏が, 2016年7月の本セミナーで報告したが,その後, このドリフト項が実現写像のambiguityによらずに定まる事が分かっただけでなく, 従来の技術的な仮定の多くをはずすことにも成功した。時間があればラフパス理論との関連および証明の概略についても話したい。
本講演の内容は、石渡 聡 氏 (山形大) および 難波 隆弥 氏 (岡山大)との共同研究に基づく。