数値解析セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 火曜日 16:30~18:00 数理科学研究科棟(駒場) 002号室 |
---|---|
担当者 | 齊藤宣一、柏原崇人 |
セミナーURL | https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/ |
2017年07月04日(火)
16:50-18:20 数理科学研究科棟(駒場) 002号室
Ming-Cheng Shiue 氏 (National Chiao Tung University)
Boundary conditions for Limited-Area Models (English)
Ming-Cheng Shiue 氏 (National Chiao Tung University)
Boundary conditions for Limited-Area Models (English)
[ 講演概要 ]
The problem of boundary conditions in a limited domain is recognized an important problem in geophysical fluid dynamics. This is due to that boundary conditions are proposed to have high resolution over a region of interest. The challenges for proposing later boundary conditions are of two types: on the computational side, if the proposed boundary conditions are not appropriate, it is well-known that the error from the lateral boundary can propagate into the computational domain and make a major effect on the numerical solution; on the mathematical side, the negative result of Oliger and Sundstrom that these equations including the inviscid primitive equations and shallow water equations in the multilayer case are not well-posed for any set of local boundary conditions.
In this talk, three-dimensional inviscid primitive equations and (one-layer and two-layer) shallow water equations which have been used in the limited-area numerical weather prediction modelings are considered. Our goals of this work are two folds: one is to propose boundary conditions which are physically suitable. That is, they let waves move freely out of the domain without producing spurious waves; the other is to numerically implement these boundary conditions by proposing suitable numerical methods. Numerical experiments are presented to demonstrate that these proposed boundary conditions and numerical schemes are suitable.
The problem of boundary conditions in a limited domain is recognized an important problem in geophysical fluid dynamics. This is due to that boundary conditions are proposed to have high resolution over a region of interest. The challenges for proposing later boundary conditions are of two types: on the computational side, if the proposed boundary conditions are not appropriate, it is well-known that the error from the lateral boundary can propagate into the computational domain and make a major effect on the numerical solution; on the mathematical side, the negative result of Oliger and Sundstrom that these equations including the inviscid primitive equations and shallow water equations in the multilayer case are not well-posed for any set of local boundary conditions.
In this talk, three-dimensional inviscid primitive equations and (one-layer and two-layer) shallow water equations which have been used in the limited-area numerical weather prediction modelings are considered. Our goals of this work are two folds: one is to propose boundary conditions which are physically suitable. That is, they let waves move freely out of the domain without producing spurious waves; the other is to numerically implement these boundary conditions by proposing suitable numerical methods. Numerical experiments are presented to demonstrate that these proposed boundary conditions and numerical schemes are suitable.