東京確率論セミナー
過去の記録 ~10/15|次回の予定|今後の予定 10/16~
開催情報 | 月曜日 16:00~17:30 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 佐々田槙子、中島秀太(明治大学) |
セミナーURL | https://sites.google.com/view/tokyo-probability-seminar23/2024年度 |
2016年05月09日(月)
16:50-18:20 数理科学研究科棟(駒場) 128号室
河本 陽介 氏 (九州大学大学院数理学府)
無限粒子系の拡散過程の密度保存性について
河本 陽介 氏 (九州大学大学院数理学府)
無限粒子系の拡散過程の密度保存性について
[ 講演概要 ]
無限個粒子を持つ平行移動不変な点過程には確率1で密度(densityもしくはintensity)が存在する。この点過程を可逆測度とする(配置空間値)拡散過程を考える。この拡散過程には任意の時刻で密度が存在し、かつ分布の意味で密度が不変であることは、平行移動不変点過程を可逆測度としていることから明らかである。当講演では、この拡散過程が時間発展において密度が不変であること、つまり容量のレベルで拡散過程は密度を変えないということを話す。
また、この密度保存性と長田-種村の結果を使うことによって、ある種類の無限次元SDEが一意的な強解を持つことを導出できる。時間があれば、どういう種類の無限次元SDEに応用できるかを説明したい。
無限個粒子を持つ平行移動不変な点過程には確率1で密度(densityもしくはintensity)が存在する。この点過程を可逆測度とする(配置空間値)拡散過程を考える。この拡散過程には任意の時刻で密度が存在し、かつ分布の意味で密度が不変であることは、平行移動不変点過程を可逆測度としていることから明らかである。当講演では、この拡散過程が時間発展において密度が不変であること、つまり容量のレベルで拡散過程は密度を変えないということを話す。
また、この密度保存性と長田-種村の結果を使うことによって、ある種類の無限次元SDEが一意的な強解を持つことを導出できる。時間があれば、どういう種類の無限次元SDEに応用できるかを説明したい。