トポロジー火曜セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也, 葉廣和夫 |
セミナーURL | https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2016年02月16日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : Common Room 16:30 -- 17:00
Luc Menichi 氏 (University of Angers)
String Topology, Euler Class and TNCZ free loop fibrations (ENGLISH)
Tea : Common Room 16:30 -- 17:00
Luc Menichi 氏 (University of Angers)
String Topology, Euler Class and TNCZ free loop fibrations (ENGLISH)
[ 講演概要 ]
Let $M$ be a connected, closed oriented manifold.
Chas and Sullivan have defined a loop product and a loop coproduct on
$H_*(LM;¥mathbb{F})$, the homology of the
free loops on $M$ with coefficients in the field $¥mathbb{F}$.
By studying this loop coproduct, I will show that if the free loop
fibration
$¥Omega M¥buildrel{i}¥over¥hookrightarrow
LM¥buildrel{ev}¥over¥twoheadrightarrow M$
is homologically trivial, i.e. $i^*:H^*(LM;¥mathbb{F})¥twoheadrightarrow
H^*(¥Omega M;¥mathbb{F})$ is onto,
then the Euler characteristic of $M$ is divisible by the characteristic
of the field $¥mathbb{F}$
(or $M$ is a point).
Let $M$ be a connected, closed oriented manifold.
Chas and Sullivan have defined a loop product and a loop coproduct on
$H_*(LM;¥mathbb{F})$, the homology of the
free loops on $M$ with coefficients in the field $¥mathbb{F}$.
By studying this loop coproduct, I will show that if the free loop
fibration
$¥Omega M¥buildrel{i}¥over¥hookrightarrow
LM¥buildrel{ev}¥over¥twoheadrightarrow M$
is homologically trivial, i.e. $i^*:H^*(LM;¥mathbb{F})¥twoheadrightarrow
H^*(¥Omega M;¥mathbb{F})$ is onto,
then the Euler characteristic of $M$ is divisible by the characteristic
of the field $¥mathbb{F}$
(or $M$ is a point).