東京確率論セミナー
過去の記録 ~01/14|次回の予定|今後の予定 01/15~
開催情報 | 月曜日 16:00~17:30 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 佐々田槙子、中島秀太(明治大学) |
セミナーURL | https://sites.google.com/view/tokyo-probability-seminar23/2024年度 |
2015年07月27日(月)
16:50-18:20 数理科学研究科棟(駒場) 128号室
鈴木 康平 氏 (京都大学大学院理学研究科)
Convergence of Brownian motions on RCD*(K,N) spaces
鈴木 康平 氏 (京都大学大学院理学研究科)
Convergence of Brownian motions on RCD*(K,N) spaces
[ 講演概要 ]
RCD*(K,N)空間とは, Erbar-Kuwada-Sturmによって導入された測度距離空間のクラスで, 「次元N以下, Ricci曲率K以上」という概念を測度距離空間上に一般化した概念である. RCD*(K,N)空間上では, Cheeger energyから定まるDirichle形式が正則になることが知られており, 対応するMarkov過程は, Brown運動と呼ばれる. 本講演では, RCD*(K,N)空間で直径D以下という条件の下, 「 空間がmeasured Gromov-Hausdorff収束する」ことと,「 Brown運動が収束する」ことが同値であることを示す.
RCD*(K,N)空間とは, Erbar-Kuwada-Sturmによって導入された測度距離空間のクラスで, 「次元N以下, Ricci曲率K以上」という概念を測度距離空間上に一般化した概念である. RCD*(K,N)空間上では, Cheeger energyから定まるDirichle形式が正則になることが知られており, 対応するMarkov過程は, Brown運動と呼ばれる. 本講演では, RCD*(K,N)空間で直径D以下という条件の下, 「 空間がmeasured Gromov-Hausdorff収束する」ことと,「 Brown運動が収束する」ことが同値であることを示す.