トポロジー火曜セミナー
過去の記録 ~05/02|次回の予定|今後の予定 05/03~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也, 葉廣和夫 |
セミナーURL | https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2015年04月28日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
正井 秀俊 氏 (東京大学大学院数理科学研究科, JSPS)
Verify hyperbolicity of 3-manifolds by computer and its applications. (JAPANESE)
Tea : 16:30-17:00 Common Room
正井 秀俊 氏 (東京大学大学院数理科学研究科, JSPS)
Verify hyperbolicity of 3-manifolds by computer and its applications. (JAPANESE)
[ 講演概要 ]
In this talk I will talk about the program called HIKMOT which
rigorously proves hyperbolicity of a given triangulated 3-manifold. To
prove hyperbolicity of a given triangulated 3-manifold, it suffices to
get a solution of Thurston's gluing equation. We use the notion called
interval arithmetic to overcome two types errors; round-off errors,
and truncated errors. I will also talk about its application to
exceptional surgeries along alternating knots. This talk is based on
joint work with N. Hoffman, K. Ichihara, M. Kashiwagi, S. Oishi, and
A. Takayasu.
In this talk I will talk about the program called HIKMOT which
rigorously proves hyperbolicity of a given triangulated 3-manifold. To
prove hyperbolicity of a given triangulated 3-manifold, it suffices to
get a solution of Thurston's gluing equation. We use the notion called
interval arithmetic to overcome two types errors; round-off errors,
and truncated errors. I will also talk about its application to
exceptional surgeries along alternating knots. This talk is based on
joint work with N. Hoffman, K. Ichihara, M. Kashiwagi, S. Oishi, and
A. Takayasu.