トポロジー火曜セミナー
過去の記録 ~09/18|次回の予定|今後の予定 09/19~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也 |
セミナーURL | http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2014年06月10日(火)
16:30-18:00 数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
小鳥居 祐香 氏 (東京大学大学院数理科学研究科)
On relation between the Milnor's $¥mu$-invariant and HOMFLYPT
polynomial (JAPANESE)
Tea: 16:00 - 16:30 コモンルーム
小鳥居 祐香 氏 (東京大学大学院数理科学研究科)
On relation between the Milnor's $¥mu$-invariant and HOMFLYPT
polynomial (JAPANESE)
[ 講演概要 ]
Milnor introduced a family of invariants for ordered oriented link,
called $¥bar{¥mu}$-invariants. Polyak showed a relation between the $¥
bar{¥mu}$-invariant of length 3 sequence and Conway polynomial.
Moreover, Habegger-Lin showed that Milnor's invariants are invariants of
string link, called $¥mu$-invariants. We show that any $¥mu$-invariant
of length $¥leq k$ can be represented as a combination of HOMFLYPT
polynomials if all $¥mu$-invariant of length $¥leq k-2$ vanish.
This result is an extension of Polyak's result.
Milnor introduced a family of invariants for ordered oriented link,
called $¥bar{¥mu}$-invariants. Polyak showed a relation between the $¥
bar{¥mu}$-invariant of length 3 sequence and Conway polynomial.
Moreover, Habegger-Lin showed that Milnor's invariants are invariants of
string link, called $¥mu$-invariants. We show that any $¥mu$-invariant
of length $¥leq k$ can be represented as a combination of HOMFLYPT
polynomials if all $¥mu$-invariant of length $¥leq k-2$ vanish.
This result is an extension of Polyak's result.