トポロジー火曜セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也, 葉廣和夫 |
セミナーURL | https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2014年04月08日(火)
16:30-18:00 数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
正井 秀俊 氏 (東京大学大学院数理科学研究科)
On the number of commensurable fibrations on a hyperbolic 3-manifold. (JAPANESE)
Tea: 16:00 - 16:30 コモンルーム
正井 秀俊 氏 (東京大学大学院数理科学研究科)
On the number of commensurable fibrations on a hyperbolic 3-manifold. (JAPANESE)
[ 講演概要 ]
By work of Thurston, it is known that if a hyperbolic fibred
$3$-manifold $M$ has Betti number greater than 1, then
$M$ admits infinitely many distinct fibrations.
For any fibration $\\omega$ on a hyperbolic $3$-manifold $M$,
the number of fibrations on $M$ that are commensurable in the sense of
Calegari-Sun-Wang to $\\omega$ is known to be finite.
In this talk, we prove that the number can be arbitrarily large.
By work of Thurston, it is known that if a hyperbolic fibred
$3$-manifold $M$ has Betti number greater than 1, then
$M$ admits infinitely many distinct fibrations.
For any fibration $\\omega$ on a hyperbolic $3$-manifold $M$,
the number of fibrations on $M$ that are commensurable in the sense of
Calegari-Sun-Wang to $\\omega$ is known to be finite.
In this talk, we prove that the number can be arbitrarily large.