トポロジー火曜セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也, 葉廣和夫 |
セミナーURL | https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2013年05月21日(火)
16:30-18:00 数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
Yuanyuan Bao 氏 (東京大学大学院数理科学研究科)
A Heegaard Floer homology for bipartite spatial graphs and its
properties (ENGLISH)
Tea: 16:00 - 16:30 コモンルーム
Yuanyuan Bao 氏 (東京大学大学院数理科学研究科)
A Heegaard Floer homology for bipartite spatial graphs and its
properties (ENGLISH)
[ 講演概要 ]
A spatial graph is a smooth embedding of a graph into a given
3-manifold. We can regard a link as a particular spatial graph.
So it is natural to ask whether it is possible to extend the idea
of link Floer homology to define a Heegaard Floer homology for
spatial graphs. In this talk, we discuss some ideas towards this
question. In particular, we define a Heegaard Floer homology for
bipartite spatial graphs and discuss some further observations
about this construction. We remark that Harvey and O’Donnol
have announced a combinatorial Floer homology for spatial graphs by
considering grid diagrams.
A spatial graph is a smooth embedding of a graph into a given
3-manifold. We can regard a link as a particular spatial graph.
So it is natural to ask whether it is possible to extend the idea
of link Floer homology to define a Heegaard Floer homology for
spatial graphs. In this talk, we discuss some ideas towards this
question. In particular, we define a Heegaard Floer homology for
bipartite spatial graphs and discuss some further observations
about this construction. We remark that Harvey and O’Donnol
have announced a combinatorial Floer homology for spatial graphs by
considering grid diagrams.