数値解析セミナー
過去の記録 ~10/15|次回の予定|今後の予定 10/16~
開催情報 | 火曜日 16:30~18:00 数理科学研究科棟(駒場) 002号室 |
---|---|
担当者 | 齊藤宣一、柏原崇人 |
セミナーURL | https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/ |
2011年05月10日(火)
16:30-18:00 数理科学研究科棟(駒場) 002号室
本セミナーは、グローバルCOE事業「数学新展開の研究教育拠点」(東京大学)の援助を受け、GCOEセミナーして行われています。
https://www.ms.u-tokyo.ac.jp/gcoe/index.html
峯崎征隆 氏 (徳島文理大学)
重力3体問題の全保存型差分法 (JAPANESE)
http://www.infsup.jp/utnas/
本セミナーは、グローバルCOE事業「数学新展開の研究教育拠点」(東京大学)の援助を受け、GCOEセミナーして行われています。
https://www.ms.u-tokyo.ac.jp/gcoe/index.html
峯崎征隆 氏 (徳島文理大学)
重力3体問題の全保存型差分法 (JAPANESE)
[ 講演概要 ]
近接遭遇時に起きる数値誤差を軽減するために正則化を行った後,離散変分法を適用することで,重力3体問題の差分化を行う.得られた差分系は以下の性質をもつ.
(1) 全ての保存量 (Hamiltonian,運動量,角運動量,重心の位置)を保つ;
(2) Lagrange 正三角形解,8 の字解,Broucke の発見した周期解などの力学的に安定な解軌道を数値的に再現する;
(3) Lagrange 平衡解の存在を解析的に示すことができる;
(4) Lagrange 平衡解の線形安定性が元の 3 体問題のそれと高精度で一致する.
[ 参考URL ]近接遭遇時に起きる数値誤差を軽減するために正則化を行った後,離散変分法を適用することで,重力3体問題の差分化を行う.得られた差分系は以下の性質をもつ.
(1) 全ての保存量 (Hamiltonian,運動量,角運動量,重心の位置)を保つ;
(2) Lagrange 正三角形解,8 の字解,Broucke の発見した周期解などの力学的に安定な解軌道を数値的に再現する;
(3) Lagrange 平衡解の存在を解析的に示すことができる;
(4) Lagrange 平衡解の線形安定性が元の 3 体問題のそれと高精度で一致する.
http://www.infsup.jp/utnas/