東京幾何セミナー
過去の記録 ~04/30|次回の予定|今後の予定 05/01~
担当者 | 二木 昭人(東京工業大学), 今野 宏 |
---|---|
セミナーURL | http://faculty.ms.u-tokyo.ac.jp/~geometry/kika.html |
備考 | 場所は東大数理(駒場)、東京工業大学(大岡山)のいずれかで行います。 詳細については、上記セミナーURLよりご確認下さい。 「今後の予定」欄には、東工大で行われるセミナーは表示されないのでご注意下さい。 |
2009年10月14日(水)
14:45-18:00 数理科学研究科棟(駒場) 056号室
場所は東大数理(駒場)、東京工業大学(大岡山)のいずれかで行います。
詳細については、上記セミナーURLよりご確認下さい。
「今後の予定」欄には、東工大で行われるセミナーは表��
近藤剛史 (Kondo Takefumi) 氏 (神戸大学大学院理学研究科) 14:45-16:15
Fixed point theorems for non-positively curved spaces and random groups
Lagrangian mean curvature flow and symplectic area
場所は東大数理(駒場)、東京工業大学(大岡山)のいずれかで行います。
詳細については、上記セミナーURLよりご確認下さい。
「今後の予定」欄には、東工大で行われるセミナーは表��
近藤剛史 (Kondo Takefumi) 氏 (神戸大学大学院理学研究科) 14:45-16:15
Fixed point theorems for non-positively curved spaces and random groups
[ 講演概要 ]
It is not easy to construct a finitely generated group with a fixed point property for non-positively curved spaces. However, if we randomly choose relators, then we can get examples of such groups. To show this, we need a criterion for deducing a fixed point property from a local property of a group. In this talk, we will introduce one such criterion, and our approach is via a scaling limit argument.
赤穂まなぶ (Akaho Manabu) 氏 (首都大学東京大学院理工学研究科) 16:30-18:00It is not easy to construct a finitely generated group with a fixed point property for non-positively curved spaces. However, if we randomly choose relators, then we can get examples of such groups. To show this, we need a criterion for deducing a fixed point property from a local property of a group. In this talk, we will introduce one such criterion, and our approach is via a scaling limit argument.
Lagrangian mean curvature flow and symplectic area
[ 講演概要 ]
In this talk, we consider symplectic area of smooth maps from a Riemann surface with boundary on embedded Lagrangian mean curvature flow in Kahler-Einstein manifolds. As an application, we observe a relation between embedded Lagrangian mean curvature flow and Floer theory of monotone Lagrangian submanifolds in Kahler-Einstein manifolds; in this case non-trivial holomorphic discs turn out to be an obstruction to the existence of long time solution of the flow.
In this talk, we consider symplectic area of smooth maps from a Riemann surface with boundary on embedded Lagrangian mean curvature flow in Kahler-Einstein manifolds. As an application, we observe a relation between embedded Lagrangian mean curvature flow and Floer theory of monotone Lagrangian submanifolds in Kahler-Einstein manifolds; in this case non-trivial holomorphic discs turn out to be an obstruction to the existence of long time solution of the flow.