東京幾何セミナー

過去の記録 ~07/13次回の予定今後の予定 07/14~

担当者 二木 昭人(東京工業大学), 今野 宏
セミナーURL http://faculty.ms.u-tokyo.ac.jp/~geometry/kika.html
備考 場所は東大数理(駒場)、東京工業大学(大岡山)のいずれかで行います。
詳細については、上記セミナーURLよりご確認下さい。
「今後の予定」欄には、東工大で行われるセミナーは表示されないのでご注意下さい。

2009年04月22日(水)

14:45-18:00   数理科学研究科棟(駒場) 122号室
場所は東大数理(駒場)、東京工業大学(大岡山)のいずれかで行います。
詳細については、上記セミナーURLよりご確認下さい。
「今後の予定」欄には、東工大で行われるセミナーは表��

中田文憲 氏 (東京工業大学理工学研究科) 14:45-16:15
Einstein-Weyl structures on 3-dimensional Severi varieties
[ 講演概要 ]
The space of nodal curves on a projective surface is called a Severi variety.In this talk, we show that any Severi variety of nodal rational curves on a non-singular projective surface is always equipped with a natural Einstein-Weyl structure, if the space is 3-dimensional. This is a generalization of the Einstein-Weyl structure on the space of smooth rational curves on a complex surface, given by N. Hitchin in the context of twistor theory. We will explain some properties of the Einstein-Weyl spaces given by this method, and we will also show some examples of such Einstein-Weyl spaces. (This is a joint work with Nobuhiro Honda.)
Tamas Hausel 氏 (Oxford University) 16:30-18:00
Toric non-Abelian Hodge theory
[ 講演概要 ]
First we give an overview of the geometrical and topological aspects of the spaces in the non-Abelian Hodge theory of a curve and their connection with quiver varieties. Then by concentrating on toric hyperkaehler varieties in place of quiver varieties we construct the toric Betti, De Rham and Dolbeault spaces and prove several of the expected properties of the geometry and topology of these varieties. This is joint work with Nick Proudfoot.