東京幾何セミナー

過去の記録 ~09/14次回の予定今後の予定 09/15~

担当者 二木 昭人(東京工業大学), 今野 宏
セミナーURL http://faculty.ms.u-tokyo.ac.jp/~geometry/kika.html
備考 場所は東大数理(駒場)、東京工業大学(大岡山)のいずれかで行います。
詳細については、上記セミナーURLよりご確認下さい。
「今後の予定」欄には、東工大で行われるセミナーは表示されないのでご注意下さい。

2008年12月10日(水)

14:45-18:00   数理科学研究科棟(駒場) 122号室
場所は東大数理(駒場)、東京工業大学(大岡山)のいずれかで行います。
詳細については、上記セミナーURLよりご確認下さい。
「今後の予定」欄には、東工大で行われるセミナーは表��

吉田 尚彦 氏 (明治大学大学院理工学研究科) 14:45-16:15
Acyclic polarizations and localization of Riemann-Roch numbers
[ 講演概要 ]
前量子化可能な閉シンプレクティック多様体が(特異)Lagrange ファイバー空間の構造を持つ場合,Riemann-Roch 数が Bohr-Sommerfeld ファイバーの個数と一致することがトーリック多様体,ユニタリー群の Gelfand-Cetlin 系や Riemann 面上の平坦 SU(2) 束のモジュライなどの例で,双方を別々に計算し比較することにより,確かめられている.本講演では,spin^c Dirac 作用素の指数に対する Witten 流の局所化を用いることによって,Riemann-Roch 数が非特異 Bohr-Sommerfeld ファイバー及び特異ファイバーに局所化することを示す.(古田幹雄氏(東大数理),藤田玄氏(学習院大学)との共同研究.論文:arXiv:0804.3258)
Megumi Harada 氏 (McMaster University) 16:30-18:00
The topology of symplectic and hyperkahler quotients
[ 講演概要 ]
Symplectic geometry lies at the crossroads of many exciting areas of research due to its relationship to geometric representation theory, combinatorics, and algebraic geometry, among others. As often happens in mathematics, the presence of symmetry in these geometric structures -- in this context, a Hamiltonian G-action for a Lie group G, i.e. an action with an associated moment map -- turns out to be crucial in the computation of topological invariants, such as the Betti numbers, the cohomology ring, or the K-theory, of symplectic manifolds which arise as Hamiltonian quotients. In the first part of the talk, I will give a bird's-eye, motivating overview of this subject, and in particular will introduce one of the main technical tools of the field, which is the Morse theory associated to the moment map. In the second part, I will give a more detailed account of recent joint work with Graeme Wilkin, which deals with Nakajima quiver varieties, a special case of hyperkahler Hamiltonian quotients. In particular, we develop a Morse theory for the hyperkahler moment map analogous to the case of the moduli space of Higgs bundles. In particular, we show that the Harder-Narasimhan stratification of spaces of representations of quivers coincide with the Morse-theoretic stratification associated to the norm-square of the real moment map. Our approach also provides insight into the topology of specific examples of small-rank quiver varieties, including hyperpolygon spaces and some ADHM quivers.