トポロジー火曜セミナー

過去の記録 ~05/28次回の予定今後の予定 05/29~

開催情報 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室
担当者 河澄 響矢, 北山 貴裕, 逆井卓也
セミナーURL http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html

2007年12月18日(火)

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
R.C. Penner 氏 (USC and Aarhus University)
Groupoid lifts of representations of mapping classes
[ 講演概要 ]
The "Ptolemy groupoid" is the fundamental path groupoid of the dual to the ideal cell decomposition of the decorated Teichmueller space of a punctured or bordered surface, and the "Torelli groupoid" is thesimilar discretization of the fundamental path groupoid of the quotient
by the Torelli subgroup of mapping classes that acts identically on the first integral homology of the surface. Mapping classes can be represented as appropriate elements of the Ptolemy groupoid and likewise for elements of the Torelli group in the Torelli groupoid.

A natural series of questions is to wonder which representations of mapping class groups, Torelli groups, and their subgroups can be lifted to the groupoid level. In a series of joint works with J. Andersen, A. Bene, N. Kawazumi, and S. Morita, we have given explicit lifts of a number of classical representations: The Johnson representations of the classical and higher Torelli groups
and the symplectic representation of the mapping class group all lift to the Torelli groupoid. Furthermore, the Nielsen representation of the mapping class group as automorphisms of a
free group lifts to the Ptolemy groupoid, and hence so too does any representation
of the mapping class group that factors through its action on the fundamental group of
the surface such as the Magnus representation. We shall survey these various groupoid lifts and discuss current and potential future applications.