応用解析セミナー

過去の記録 ~12/05次回の予定今後の予定 12/06~

開催情報 木曜日 16:00~17:30 数理科学研究科棟(駒場) 002号室
担当者 石毛 和弘

2007年11月08日(木)

16:00-17:30   数理科学研究科棟(駒場) 126号室
倉田 和浩 氏 (首都大学東京・理工学研究科・数理情報科学専攻)
弱い飽和効果をもったGierer-Meinhardt systemにおける軸対称領域上での多重ピーク解の構成と漸近挙動について
[ 講演概要 ]
This talk is based on the joint work with Kotaro Morimoto (Tokyo Metropolitan University).

We are concerned with stationary solutions to the following reaction diffusion system which is called the Gierer-Meinhardt system with saturation.
$A_t=\\epsilon^2 \\Delta A-A+A^2/(H(1+kA^2), A>0,$
$\\tau H_t=D\\Delta H-H+A2, H>0,$
where $\\epsilon >0$, $\\tau \\geq 0$, $k>0$.
The unknowns $A$ and $H$ represent the concentrations of the activator and the inhibitor. Here $\\Omega$ is a bounded smooth domain in $R^N$ and we consider homogeneous Neumann boundary conditions. When $\\Omega$ is an $x_N$-axially symmetric domain and $2\\leq N\\leq 5$, for sufficiently small $\\epsilon>0$ and large $D>0$, we construct a multi-peak stationary solution peaked at arbitrarily chosen intersections of $x^N$-axis and $\\partial \\Omega$, under the condition that $k\\epsilon^{-2N}$ converges to some $k_0\\in[0,\\infty)$ as $\\epsilon \\to 0$.

In my talk, I will explain related results comparing the differences between the case $k=0$ and $k>0$, the basic strategy of the proof of our results with some details, and open questions.