応用解析セミナー
過去の記録 ~12/23|次回の予定|今後の予定 12/24~
| 開催情報 | 木曜日 16:00~17:30 数理科学研究科棟(駒場) 号室 |
|---|---|
| 担当者 | 石毛 和弘,宮本 安人,三竹 大寿,高田 了 |
| セミナーURL | https://www.ms.u-tokyo.ac.jp/seminar/applana/index.html |
過去の記録
2025年11月20日(木)
16:00-17:30 数理科学研究科棟(駒場) 128号室
内免 大輔 氏 (室蘭工業大学)
2次元超臨界半線形楕円型方程式の球対称爆発解の無限集中と振動現象について (Japanese)
内免 大輔 氏 (室蘭工業大学)
2次元超臨界半線形楕円型方程式の球対称爆発解の無限集中と振動現象について (Japanese)
[ 講演概要 ]
本講演では円盤領域における一般型超臨界増大度を持つ半線形楕円型方程式の解の爆発現象に対する解析結果を与える。主結果として,爆発解の最大点の周りに方程式のスケール構造に付随する積分量(ここではスケール質量と呼ぶ)の集中部分の無限列が生じることを示す。各集中部分の漸近的形状やスケール質量の極限値は全空間Liouville方程式と質量漸化式系を用いて明示的に与えることができる。さらにこの無限集中列の現れにより解のグラフに無数の隆起が生じていることがグリーンの表示式から導かれる漸近公式によって分かる。この観察結果に基づいて,爆発解が特異解のまわりを振動するための十分条件を与える。応用として,いくつかの典型的な超臨界非線形項に対する解の分岐図の無限振動および適当なパラメーターに対する無限個解の存在を証明する。
本講演では円盤領域における一般型超臨界増大度を持つ半線形楕円型方程式の解の爆発現象に対する解析結果を与える。主結果として,爆発解の最大点の周りに方程式のスケール構造に付随する積分量(ここではスケール質量と呼ぶ)の集中部分の無限列が生じることを示す。各集中部分の漸近的形状やスケール質量の極限値は全空間Liouville方程式と質量漸化式系を用いて明示的に与えることができる。さらにこの無限集中列の現れにより解のグラフに無数の隆起が生じていることがグリーンの表示式から導かれる漸近公式によって分かる。この観察結果に基づいて,爆発解が特異解のまわりを振動するための十分条件を与える。応用として,いくつかの典型的な超臨界非線形項に対する解の分岐図の無限振動および適当なパラメーターに対する無限個解の存在を証明する。
2025年09月25日(木)
16:00-17:30 数理科学研究科棟(駒場) 128号室
尾上文彦 氏 (ミュンヘン工科大学)
On the shape of fractional minimal surfaces (Japanese)
尾上文彦 氏 (ミュンヘン工科大学)
On the shape of fractional minimal surfaces (Japanese)
[ 講演概要 ]
Fractional perimeter (or fractional area) has been studied for more than a decade since Caffarelli, Roquejofffre, and Savin introduced its notion in 2010; however, there are still a lot of things unknown. In this talk, we discuss the shape of the boundary of sets minimizing their fractional perimeter under several boundary conditions, reviewing several interesting examples distinct from sets minimizing their classical perimeter. Moreover, if time permits, we present another notion of fractional area for smooth hypersurfaces with boundary, which was introduced by Paroni, Podio-Guidugli, and Seguin in 2018. Then we discuss the shape of critical points of their fractional area in several simple situations. This talk is partially based on a joint work with S. Dipierro and E. Valdinoci.
Fractional perimeter (or fractional area) has been studied for more than a decade since Caffarelli, Roquejofffre, and Savin introduced its notion in 2010; however, there are still a lot of things unknown. In this talk, we discuss the shape of the boundary of sets minimizing their fractional perimeter under several boundary conditions, reviewing several interesting examples distinct from sets minimizing their classical perimeter. Moreover, if time permits, we present another notion of fractional area for smooth hypersurfaces with boundary, which was introduced by Paroni, Podio-Guidugli, and Seguin in 2018. Then we discuss the shape of critical points of their fractional area in several simple situations. This talk is partially based on a joint work with S. Dipierro and E. Valdinoci.
2025年07月03日(木)
16:00-17:30 数理科学研究科棟(駒場) 128号室
確率論セミナーと合同開催
Jessica Lin 氏 (McGill University)
Generalized Front Propagation for Stochastic Spatial Models (English)
確率論セミナーと合同開催
Jessica Lin 氏 (McGill University)
Generalized Front Propagation for Stochastic Spatial Models (English)
[ 講演概要 ]
In this talk, I will present a general framework which can be used to analyze the scaling limits of various stochastic spatial "population" models. Such models include ternary Branching Brownian motion subject to majority voting and several interacting particle systems motivated by biology. The approach is based on moment duality and a PDE methodology introduced by Barles and Souganidis, which can be used to study the asymptotic behaviour of rescaled reaction-diffusion equations. In the limit, the models exhibit phase separation with an evolving interface which is governed by a global-in-time, generalized notion of mean-curvature flow. This talk is based on joint work with Thomas Hughes (University of Bath).
In this talk, I will present a general framework which can be used to analyze the scaling limits of various stochastic spatial "population" models. Such models include ternary Branching Brownian motion subject to majority voting and several interacting particle systems motivated by biology. The approach is based on moment duality and a PDE methodology introduced by Barles and Souganidis, which can be used to study the asymptotic behaviour of rescaled reaction-diffusion equations. In the limit, the models exhibit phase separation with an evolving interface which is governed by a global-in-time, generalized notion of mean-curvature flow. This talk is based on joint work with Thomas Hughes (University of Bath).
2025年06月26日(木)
16:00-17:30 数理科学研究科棟(駒場) 128号室
Yang Yang 氏 (Johns Hopkins University)
A half-space Bernstein theorem for anisotropic minimal graphs (English)
Yang Yang 氏 (Johns Hopkins University)
A half-space Bernstein theorem for anisotropic minimal graphs (English)
[ 講演概要 ]
Anisotropic functionals are the natural generalization of the area functional. From a technical perspective, what distinguishes general anisotropic functionals from the area case is the absence of a monotonicity formula. In this talk, we will present a proof of a half-space Bernstein theorem for anisotropic minimal graphs with flat boundary condition. The proof uses only the maximal principle and ideas from fully nonlinear PDE theory in lieu of a monotonicity formula. This is joint work with W. Du, C. Moony, and J. Zhu.
Anisotropic functionals are the natural generalization of the area functional. From a technical perspective, what distinguishes general anisotropic functionals from the area case is the absence of a monotonicity formula. In this talk, we will present a proof of a half-space Bernstein theorem for anisotropic minimal graphs with flat boundary condition. The proof uses only the maximal principle and ideas from fully nonlinear PDE theory in lieu of a monotonicity formula. This is joint work with W. Du, C. Moony, and J. Zhu.
2025年06月05日(木)
16:00-17:30 数理科学研究科棟(駒場) 128号室
猪奥倫左 氏 (東北大学)
半線形楕円型方程式の特異解の多重存在 (Japanese)
猪奥倫左 氏 (東北大学)
半線形楕円型方程式の特異解の多重存在 (Japanese)
[ 講演概要 ]
半線形楕円型方程式の特異解の構造は,空間3次元以上でのべき乗非線形項の場合にはよく理解されている.本講演では球対称解に対する既存の結果を概観したのち,単調増大する一般の非線形項に対して増大度の分類を導入し,それに基づく球対称特異解の構成方法について説明する.特に Sobolev 劣臨界に相当する場合の特異解の多重存在性について最近得られた結果を紹介する.本講演は藤嶋陽平氏(静岡大学)との共同研究に基づく.
半線形楕円型方程式の特異解の構造は,空間3次元以上でのべき乗非線形項の場合にはよく理解されている.本講演では球対称解に対する既存の結果を概観したのち,単調増大する一般の非線形項に対して増大度の分類を導入し,それに基づく球対称特異解の構成方法について説明する.特に Sobolev 劣臨界に相当する場合の特異解の多重存在性について最近得られた結果を紹介する.本講演は藤嶋陽平氏(静岡大学)との共同研究に基づく.
2025年05月01日(木)
16:00-17:30 数理科学研究科棟(駒場) 128号室
片山翔 氏 (東京大学大学院数理科学研究科)
Fundamental solution to the heat equation with a dynamical boundary condition (Japanese)
片山翔 氏 (東京大学大学院数理科学研究科)
Fundamental solution to the heat equation with a dynamical boundary condition (Japanese)
[ 講演概要 ]
We give an explicit representation of the fundamental solution to the heat equation on a half-space of R^N with the homogeneous dynamical boundary condition and obtain upper and lower estimates of the fundamental solution. These enable us to obtain sharp decay estimates of solutions to the heat equation with the homogeneous dynamical boundary condition. Furthermore, as an application of our decay estimates, we identify the so-called Fujita exponent for a semilinear heat equation on the half-space of R^N with the homogeneous dynamical boundary condition. This talk is based on a joint work with Kazuhiro Ishige (Univ. of Tokyo) and Tatsuki Kawakami (Ryukoku Univ.)
We give an explicit representation of the fundamental solution to the heat equation on a half-space of R^N with the homogeneous dynamical boundary condition and obtain upper and lower estimates of the fundamental solution. These enable us to obtain sharp decay estimates of solutions to the heat equation with the homogeneous dynamical boundary condition. Furthermore, as an application of our decay estimates, we identify the so-called Fujita exponent for a semilinear heat equation on the half-space of R^N with the homogeneous dynamical boundary condition. This talk is based on a joint work with Kazuhiro Ishige (Univ. of Tokyo) and Tatsuki Kawakami (Ryukoku Univ.)
2025年04月17日(木)
16:00-17:30 数理科学研究科棟(駒場) 128号室
北野修平 氏 (東京大学大学院数理科学研究科)
On Calderón–Zygmund Estimates for Fully Nonlinear Equations (Japanese)
北野修平 氏 (東京大学大学院数理科学研究科)
On Calderón–Zygmund Estimates for Fully Nonlinear Equations (Japanese)
[ 講演概要 ]
The Calderón–Zygmund estimate provides a bound on the $L^p$ norms of second-order derivatives of solutions to elliptic equations. Caffarelli extended this result to fully nonlinear equations, requiring the exponent $p$ to be sufficiently large. In this work, we explore two generalizations of Caffarelli’s result: one concerning small values of $p$ and the other involving equations with $L^n$ drift terms.
The Calderón–Zygmund estimate provides a bound on the $L^p$ norms of second-order derivatives of solutions to elliptic equations. Caffarelli extended this result to fully nonlinear equations, requiring the exponent $p$ to be sufficiently large. In this work, we explore two generalizations of Caffarelli’s result: one concerning small values of $p$ and the other involving equations with $L^n$ drift terms.
2024年07月18日(木)
16:00-17:30 数理科学研究科棟(駒場) 128号室
清水 良輔 氏 (早稲田大学)
Construction of a $p$-energy form and $p$-energy measures on the Sierpiński carpet (Japanese)
清水 良輔 氏 (早稲田大学)
Construction of a $p$-energy form and $p$-energy measures on the Sierpiński carpet (Japanese)
[ 講演概要 ]
In this talk, I will propose a new way of constructing the $(1,p)$-Sobolev space, $p$-energy functional and $p$-energy measures on the Sierpinski carpet for all $p \in (1,\infty)$. Our approach is mainly based on an idea in the work by Kusuoka--Zhou (1992), where the canonical regular Dirichlet forms (Brownian motions) on some self-similar sets are constructed as scaling limits of discrete $2$-energy forms. I will also explain some results related to the Ahlfors regular conformal dimension, which coincides with the critical value $p$ whether our $(1,p)$-Sobolev space is embedded in the set of continuous functions. This is based on joint work with Mathav Murugan (The University of British Columbia).
In this talk, I will propose a new way of constructing the $(1,p)$-Sobolev space, $p$-energy functional and $p$-energy measures on the Sierpinski carpet for all $p \in (1,\infty)$. Our approach is mainly based on an idea in the work by Kusuoka--Zhou (1992), where the canonical regular Dirichlet forms (Brownian motions) on some self-similar sets are constructed as scaling limits of discrete $2$-energy forms. I will also explain some results related to the Ahlfors regular conformal dimension, which coincides with the critical value $p$ whether our $(1,p)$-Sobolev space is embedded in the set of continuous functions. This is based on joint work with Mathav Murugan (The University of British Columbia).
2024年06月27日(木)
16:00-17:30 数理科学研究科棟(駒場) 128号室
大泉 嶺 氏 (国立社会保障・人口問題研究所)
A Control Theory in Mathematical Demography (Japanese)
大泉 嶺 氏 (国立社会保障・人口問題研究所)
A Control Theory in Mathematical Demography (Japanese)
[ 講演概要 ]
Multistate Age-Structured Population Model is a fundamental mathematical model in mathematical demography that describes population structure and dynamics with state variables that are not uniform with age (e.g., body size, place of residence, genetic characteristics, etc.). The model's eigensystems have been used in various demographic analyses, providing essential indicators for discussing evolutionary theory. In this study, we derive a control equation (HJB equation) that maximizes the spectral radius from the eigensystem of the multistate age-structured population model and discuss the control process that generates an evolutionarily adaptive life history.
Multistate Age-Structured Population Model is a fundamental mathematical model in mathematical demography that describes population structure and dynamics with state variables that are not uniform with age (e.g., body size, place of residence, genetic characteristics, etc.). The model's eigensystems have been used in various demographic analyses, providing essential indicators for discussing evolutionary theory. In this study, we derive a control equation (HJB equation) that maximizes the spectral radius from the eigensystem of the multistate age-structured population model and discuss the control process that generates an evolutionarily adaptive life history.
2024年05月30日(木)
16:00-17:30 数理科学研究科棟(駒場) 128号室
対面・オンラインハイブリッド開催
Tim Laux 氏 (University of Regensburg, Germany)
Energy convergence of the Allen-Cahn equation for mean convex mean curvature flow (English)
https://forms.gle/8KnFWfHFbkn9fAqaA
対面・オンラインハイブリッド開催
Tim Laux 氏 (University of Regensburg, Germany)
Energy convergence of the Allen-Cahn equation for mean convex mean curvature flow (English)
[ 講演概要 ]
In this talk, I'll present a work in progress in which I positively answer a question of Ilmanen (JDG 1993) on the strong convergence of the Allen-Cahn equation to mean curvature flow when starting from well-prepared initial data around a mean convex surface. As a corollary, the conditional convergence result with Simon (CPAM 2018) becomes unconditional in the mean convex case.
[ 参考URL ]In this talk, I'll present a work in progress in which I positively answer a question of Ilmanen (JDG 1993) on the strong convergence of the Allen-Cahn equation to mean curvature flow when starting from well-prepared initial data around a mean convex surface. As a corollary, the conditional convergence result with Simon (CPAM 2018) becomes unconditional in the mean convex case.
https://forms.gle/8KnFWfHFbkn9fAqaA
2024年05月23日(木)
16:00-17:30 数理科学研究科棟(駒場) 128号室
Adina Ciomaga 氏 (University Paris Cité (Laboratoire Jacques Louis Lions), France “O Mayer” Institute of the Romanian Academy, Iasi, Roumania)
Homogenization of nonlocal Hamilton Jacobi equations (English)
Adina Ciomaga 氏 (University Paris Cité (Laboratoire Jacques Louis Lions), France “O Mayer” Institute of the Romanian Academy, Iasi, Roumania)
Homogenization of nonlocal Hamilton Jacobi equations (English)
[ 講演概要 ]
I will present the framework of periodic homogenisation of nonlocal Hamilton-Jacobi equations, associated with Levy-Itô integro-differential operators. A typical equation is the fractional diffusion coupled with a transport term, where the diffusion is only weakly elliptical. Homogenization is established in two steps: (i) the resolution of a cellular problem - where Lipshitz regularity of the corrector plays a key role and (ii) the convergence of the oscillating solutions towards an averaged profile - where comparison principles are involved. I shall discuss recent results on the regularity of solutions and comparison principles for nonlocal equations, and the difficulties we face when compared with local PDEs. The talked is based on recent developments obtained in collaboration with D. Ghilli, O.Ley, E. Topp, T. Minh Le.
I will present the framework of periodic homogenisation of nonlocal Hamilton-Jacobi equations, associated with Levy-Itô integro-differential operators. A typical equation is the fractional diffusion coupled with a transport term, where the diffusion is only weakly elliptical. Homogenization is established in two steps: (i) the resolution of a cellular problem - where Lipshitz regularity of the corrector plays a key role and (ii) the convergence of the oscillating solutions towards an averaged profile - where comparison principles are involved. I shall discuss recent results on the regularity of solutions and comparison principles for nonlocal equations, and the difficulties we face when compared with local PDEs. The talked is based on recent developments obtained in collaboration with D. Ghilli, O.Ley, E. Topp, T. Minh Le.
2024年04月11日(木)
16:00-17:30 数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催
Jan Haskovec 氏 (KAUST, Saudi Arabia)
Non-Markovian models of collective motion (English)
https://forms.gle/5cZ4WzqBjhsXrxgU6
対面・オンラインハイブリッド開催
Jan Haskovec 氏 (KAUST, Saudi Arabia)
Non-Markovian models of collective motion (English)
[ 講演概要 ]
I will give an overview of recent results for models of collective behavior governed by functional differential equations with non-Markovian structure. The talk will focus on models of interacting agents with applications in biology (flocking, swarming), social sciences (opinion formation) and engineering (swarm robotics), where latency (delay) plays a significant role. I will characterize two main sources of delay - inter-agent communications ("transmission delay") and information processing ("reaction delay") - and discuss their impacts on the group dynamics. I will give an overview of analytical methods for studying the asymptotic behavior of the models in question and their mean-field limits. In particular, I will show that the transmission vs. reaction delay leads to fundamentally different mathematical structures and requires appropriate choice of analytical tools. Finally, motivated by situations where finite speed of information propagation is significant, I will introduce an interesting class of problems where the delay depends nontrivially and nonlinearly on the state of the system, and discuss the available analytical results and open problems here.
[ 参考URL ]I will give an overview of recent results for models of collective behavior governed by functional differential equations with non-Markovian structure. The talk will focus on models of interacting agents with applications in biology (flocking, swarming), social sciences (opinion formation) and engineering (swarm robotics), where latency (delay) plays a significant role. I will characterize two main sources of delay - inter-agent communications ("transmission delay") and information processing ("reaction delay") - and discuss their impacts on the group dynamics. I will give an overview of analytical methods for studying the asymptotic behavior of the models in question and their mean-field limits. In particular, I will show that the transmission vs. reaction delay leads to fundamentally different mathematical structures and requires appropriate choice of analytical tools. Finally, motivated by situations where finite speed of information propagation is significant, I will introduce an interesting class of problems where the delay depends nontrivially and nonlinearly on the state of the system, and discuss the available analytical results and open problems here.
https://forms.gle/5cZ4WzqBjhsXrxgU6
2024年03月21日(木)
16:00-17:30 数理科学研究科棟(駒場) 126号室
Mostafa Fazly 氏 (University of Texas at San Antonio)
Symmetry Results for Nonlinear PDEs (English)
Mostafa Fazly 氏 (University of Texas at San Antonio)
Symmetry Results for Nonlinear PDEs (English)
[ 講演概要 ]
The study of qualitative behavior of solutions of Partial Differential Equations (PDEs) started roughly in mid-18th century. Since then scientists and mathematicians from different fields have put in a great effort to expand the theory of nonlinear PDEs. PDEs can be divided into two kinds: (a) the linear ones, which are relatively easy to analyze and can often be solved completely, and (b) the nonlinear ones, which are much harder to analyze and can almost never be solved completely.
We begin this talk by an introduction on foundational ideas behind the De Giorgi’s conjecture (1978) for the Allen-Cahn equation that is inspired by the Bernstein’s problem (1910). This conjecture brings together three groups of mathematicians: (a) a group specializing in nonlinear partial differential equations, (b) a group in differential geometry, and more specially on minimal surfaces and constant mean curvature surfaces, and (c) a group in mathematical physics on phase transitions. We then present natural generalizations and counterparts of the problem. These generalizations lead us to introduce certain novel concepts, and we illustrate why these novel concepts seem to be the right concepts in the context and how they can be used to study particular systems and models arising in Sciences. We give a survey of recent results.
The study of qualitative behavior of solutions of Partial Differential Equations (PDEs) started roughly in mid-18th century. Since then scientists and mathematicians from different fields have put in a great effort to expand the theory of nonlinear PDEs. PDEs can be divided into two kinds: (a) the linear ones, which are relatively easy to analyze and can often be solved completely, and (b) the nonlinear ones, which are much harder to analyze and can almost never be solved completely.
We begin this talk by an introduction on foundational ideas behind the De Giorgi’s conjecture (1978) for the Allen-Cahn equation that is inspired by the Bernstein’s problem (1910). This conjecture brings together three groups of mathematicians: (a) a group specializing in nonlinear partial differential equations, (b) a group in differential geometry, and more specially on minimal surfaces and constant mean curvature surfaces, and (c) a group in mathematical physics on phase transitions. We then present natural generalizations and counterparts of the problem. These generalizations lead us to introduce certain novel concepts, and we illustrate why these novel concepts seem to be the right concepts in the context and how they can be used to study particular systems and models arising in Sciences. We give a survey of recent results.
2024年02月05日(月)
16:00-17:30 数理科学研究科棟(駒場) 122号室
対面・オンラインハイブリッド開催(通常と開催曜日・会場が異なりますのでご注意ください)
Reinhard Farwig 氏 (Technische Universität Darmstadt)
Viscous Flow in Domains with Moving Boundaries - From Bounded to Unbounded Domains (English)
https://forms.gle/xKPKu1uw9PeHEEck9
対面・オンラインハイブリッド開催(通常と開催曜日・会場が異なりますのでご注意ください)
Reinhard Farwig 氏 (Technische Universität Darmstadt)
Viscous Flow in Domains with Moving Boundaries - From Bounded to Unbounded Domains (English)
[ 講演概要 ]
以下のPDFファイルをご参照ください:
https://drive.google.com/file/d/1dJJU1ybE-n8yn3LZTReTeH2UFX9wXQv9/view?usp=drive_link
[ 参考URL ]以下のPDFファイルをご参照ください:
https://drive.google.com/file/d/1dJJU1ybE-n8yn3LZTReTeH2UFX9wXQv9/view?usp=drive_link
https://forms.gle/xKPKu1uw9PeHEEck9
2024年01月30日(火)
16:30-17:30 数理科学研究科棟(駒場) 002号室
対面(通常と開催曜日・会場が異なりますのでご注意ください)
Danielle Hilhorst 氏 (CNRS / Université de Paris-Saclay)
Convergence of solutions of a one-phase Stefan problem with Neumann boundary data to a self-similar profile. (English)
対面(通常と開催曜日・会場が異なりますのでご注意ください)
Danielle Hilhorst 氏 (CNRS / Université de Paris-Saclay)
Convergence of solutions of a one-phase Stefan problem with Neumann boundary data to a self-similar profile. (English)
[ 講演概要 ]
We study a one-dimensional one-phase Stefan problem with a Neumann boundary condition on the fixed part of the boundary.
We construct a unique self-similar solution and show that for a large class of initial data, the solution of the time evolution problem converges to this self-similar solution as time tends to infinity. Similar results were already obtained by Bouguezzi, Hilhorst, Miyamoto, and Scheid in the case of Dirichlet data on the fixed boundary. However, they had to show that the space derivative of the solution uniformly converges to its limit. Here, our proof requires less regularity, which should make our arguments easier to adapt to different settings.
This is a joint work with Sabrina Roscani and Piotr Rybka.
We study a one-dimensional one-phase Stefan problem with a Neumann boundary condition on the fixed part of the boundary.
We construct a unique self-similar solution and show that for a large class of initial data, the solution of the time evolution problem converges to this self-similar solution as time tends to infinity. Similar results were already obtained by Bouguezzi, Hilhorst, Miyamoto, and Scheid in the case of Dirichlet data on the fixed boundary. However, they had to show that the space derivative of the solution uniformly converges to its limit. Here, our proof requires less regularity, which should make our arguments easier to adapt to different settings.
This is a joint work with Sabrina Roscani and Piotr Rybka.
2023年11月30日(木)
16:00-17:30 数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催
Philippe G. LeFloch 氏 (Sorbonne University and CNRS)
Einstein spacetimes: dispersion, localization, collapse, and bouncing (English)
https://forms.gle/HPsYinKweUW3AQGv9
対面・オンラインハイブリッド開催
Philippe G. LeFloch 氏 (Sorbonne University and CNRS)
Einstein spacetimes: dispersion, localization, collapse, and bouncing (English)
[ 講演概要 ]
I will overview recent developments on Einstein's field equations of general relativity, especially the global evolution problem from initial data sets. A variety of phenomena may arise in this evolution: gravitational waves, dispersion, collapse, formation of singularities, and bouncing. While many problems remain widely open and very challenging, in the past decades major mathematical advances were made for several classes of spacetimes. I will review recent results on the (1) nonlinear stability of Minkowski spacetime, (2) localization problem at infinity, (3) collapse of spherically symmetric fields, and (4) scattering through quiescent singularity. This talk is based on joint work with Y. Ma (Xi'an), T.-C. Nguyen (Montpellier), F. Mena (Lisbon), B. Le Floch (Paris), and G. Veneziano (Geneva).
Blog: philippelefloch.org
[ 参考URL ]I will overview recent developments on Einstein's field equations of general relativity, especially the global evolution problem from initial data sets. A variety of phenomena may arise in this evolution: gravitational waves, dispersion, collapse, formation of singularities, and bouncing. While many problems remain widely open and very challenging, in the past decades major mathematical advances were made for several classes of spacetimes. I will review recent results on the (1) nonlinear stability of Minkowski spacetime, (2) localization problem at infinity, (3) collapse of spherically symmetric fields, and (4) scattering through quiescent singularity. This talk is based on joint work with Y. Ma (Xi'an), T.-C. Nguyen (Montpellier), F. Mena (Lisbon), B. Le Floch (Paris), and G. Veneziano (Geneva).
Blog: philippelefloch.org
https://forms.gle/HPsYinKweUW3AQGv9
2023年09月14日(木)
16:00-17:30 数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催
Michał Łasica 氏 (The Polish Academy of Sciences)
Bounds on the gradient of minimizers in variational denoising (English)
https://forms.gle/C39ZLdQNVHyVmJ4j8
対面・オンラインハイブリッド開催
Michał Łasica 氏 (The Polish Academy of Sciences)
Bounds on the gradient of minimizers in variational denoising (English)
[ 講演概要 ]
We consider minimization problem for a class of convex integral functionals composed of two terms:
-- a regularizing term of linear growth in the gradient,
-- and a fidelity term penalizing the distance from a given function.
To ensure that such functionals attain their minima, one needs to extend their domain to the BV space. In particular minimizers may exhibit jump discontinuities. I will discuss estimates on the gradient of minimizers in terms of the data, focusing on singular part of the gradient measure.
The talk is based on joint works with P. Rybka, Z. Grochulska and A. Chambolle.
[ 参考URL ]We consider minimization problem for a class of convex integral functionals composed of two terms:
-- a regularizing term of linear growth in the gradient,
-- and a fidelity term penalizing the distance from a given function.
To ensure that such functionals attain their minima, one needs to extend their domain to the BV space. In particular minimizers may exhibit jump discontinuities. I will discuss estimates on the gradient of minimizers in terms of the data, focusing on singular part of the gradient measure.
The talk is based on joint works with P. Rybka, Z. Grochulska and A. Chambolle.
https://forms.gle/C39ZLdQNVHyVmJ4j8
2023年09月07日(木)
16:00-17:30 数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催
Samuel Mercer 氏 (Delft University of Technology)
Uniform Convergence of Gradient Flows on a Stack of Banach Spaces (English)
https://forms.gle/T8yWr2gDTYzj8vkE7
対面・オンラインハイブリッド開催
Samuel Mercer 氏 (Delft University of Technology)
Uniform Convergence of Gradient Flows on a Stack of Banach Spaces (English)
[ 講演概要 ]
Within this talk I will recall the classical result: Given a sequence of convex functionals on a Hilbert space, Gamma-convergence of this sequence implies uniform convergence on finite time-intervals for their gradient flows. I will then discuss a generalisation for this result. In particular our functionals are defined on a sequence of distinct Banach spaces that can be stacked together inside of a unifying space. We will study a kind of gradient flow for our functionals inside their respective Banach space and ask the following question. What structure is necessary within our unifying space to attain uniform convergence of gradient flows?
[ 参考URL ]Within this talk I will recall the classical result: Given a sequence of convex functionals on a Hilbert space, Gamma-convergence of this sequence implies uniform convergence on finite time-intervals for their gradient flows. I will then discuss a generalisation for this result. In particular our functionals are defined on a sequence of distinct Banach spaces that can be stacked together inside of a unifying space. We will study a kind of gradient flow for our functionals inside their respective Banach space and ask the following question. What structure is necessary within our unifying space to attain uniform convergence of gradient flows?
https://forms.gle/T8yWr2gDTYzj8vkE7
2023年06月22日(木)
16:00-17:30 数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催
Jiwoong Jang 氏 (University of Wisconsin Madison)
Convergence rate of periodic homogenization of forced mean curvature flow of graphs in the laminar setting (English)
https://forms.gle/BTuFtcmUVnvCLieX9
対面・オンラインハイブリッド開催
Jiwoong Jang 氏 (University of Wisconsin Madison)
Convergence rate of periodic homogenization of forced mean curvature flow of graphs in the laminar setting (English)
[ 講演概要 ]
Mean curvature flow with a forcing term models the motion of a phase boundary through media with defects and heterogeneities. When the environment shows periodic patterns with small oscillations, an averaged behavior is exhibited as we zoom out, and providing mathematical treatment for the behavior has received a great attention recently. In this talk, we discuss the periodic homogenization of forced mean curvature flows, and we give a quantitative analysis for the flow starting from an entire graph in a laminated environment.
[ 参考URL ]Mean curvature flow with a forcing term models the motion of a phase boundary through media with defects and heterogeneities. When the environment shows periodic patterns with small oscillations, an averaged behavior is exhibited as we zoom out, and providing mathematical treatment for the behavior has received a great attention recently. In this talk, we discuss the periodic homogenization of forced mean curvature flows, and we give a quantitative analysis for the flow starting from an entire graph in a laminated environment.
https://forms.gle/BTuFtcmUVnvCLieX9
2023年05月18日(木)
16:00-17:30 数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催
Junha Kim 氏 (Korea Institute for Advanced Study)
On the wellposedness of generalized SQG equation in a half-plane (English)
https://forms.gle/Cezz3sicY7izDPfq8
対面・オンラインハイブリッド開催
Junha Kim 氏 (Korea Institute for Advanced Study)
On the wellposedness of generalized SQG equation in a half-plane (English)
[ 講演概要 ]
In this talk, we investigate classical solutions to the $\alpha$-SQG in a half-plane, which reduces to the 2D Euler equations and SQG equation for $\alpha=0$ and $\alpha=1$, respectively. When $\alpha \in (0,1/2]$, we establish that $\alpha$-SQG is well-posed in appropriate anisotropic Lipschitz spaces. Moreover, we prove that every solution with smooth initial data that is compactly supported and not vanishing on the boundary has infinite $C^{\beta}$-norm instantaneously where $\beta > 1-\alpha$. In the case of $\alpha \in (1/2,1]$, we show the nonexistence of solutions in $C^{\alpha}$. This is a joint work with In-Jee Jeong and Yao Yao.
[ 参考URL ]In this talk, we investigate classical solutions to the $\alpha$-SQG in a half-plane, which reduces to the 2D Euler equations and SQG equation for $\alpha=0$ and $\alpha=1$, respectively. When $\alpha \in (0,1/2]$, we establish that $\alpha$-SQG is well-posed in appropriate anisotropic Lipschitz spaces. Moreover, we prove that every solution with smooth initial data that is compactly supported and not vanishing on the boundary has infinite $C^{\beta}$-norm instantaneously where $\beta > 1-\alpha$. In the case of $\alpha \in (1/2,1]$, we show the nonexistence of solutions in $C^{\alpha}$. This is a joint work with In-Jee Jeong and Yao Yao.
https://forms.gle/Cezz3sicY7izDPfq8
2023年04月06日(木)
16:00-17:30 数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催
Van Tien Nguyen 氏 (National Taiwan University)
Blowup solutions to the Keller-Segel system (English)
https://forms.gle/7ogZKyh1oXKkPbN56
対面・オンラインハイブリッド開催
Van Tien Nguyen 氏 (National Taiwan University)
Blowup solutions to the Keller-Segel system (English)
[ 講演概要 ]
I will present constructive examples of finite-time blowup solutions to the Keller-Segel system in $\mathbb{R}^d$. For $d = 2$ ($L^1$-critical), there are finite time blowup solutions that are of Type II with finite mass. Blowup rates are completely quantized according to a discrete spectrum of a linearized operator around the rescaled stationary solution in the self-similar setting. There is a stable blowup mechanism which is expected to be generic among others. For $d \geq 3$ ($L^1$-supercritical), we construct finite time blowup solutions that are completely unrelated to the self-similar scale, in particular, they are of Type II with finite mass. Interestingly, the radial blowup profile is linked to the traveling-wave of the 1D viscous Burgers equation. Our constructed solution actually has the form of collapsing-ring which consists of an imploding, smoothed-out shock wave moving towards the origin to form a Dirac mass at the singularity. I will also discuss other blowup patterns that possibly occur in the cases $d = 2,3,4$.
[ 参考URL ]I will present constructive examples of finite-time blowup solutions to the Keller-Segel system in $\mathbb{R}^d$. For $d = 2$ ($L^1$-critical), there are finite time blowup solutions that are of Type II with finite mass. Blowup rates are completely quantized according to a discrete spectrum of a linearized operator around the rescaled stationary solution in the self-similar setting. There is a stable blowup mechanism which is expected to be generic among others. For $d \geq 3$ ($L^1$-supercritical), we construct finite time blowup solutions that are completely unrelated to the self-similar scale, in particular, they are of Type II with finite mass. Interestingly, the radial blowup profile is linked to the traveling-wave of the 1D viscous Burgers equation. Our constructed solution actually has the form of collapsing-ring which consists of an imploding, smoothed-out shock wave moving towards the origin to form a Dirac mass at the singularity. I will also discuss other blowup patterns that possibly occur in the cases $d = 2,3,4$.
https://forms.gle/7ogZKyh1oXKkPbN56
2023年02月22日(水)
16:00-17:30 数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催(通常と開催曜日が異なりますのでご注意下さい)
Alessio Porretta 氏 (University of Rome Tor Vergata)
Long time decay of Fokker-Planck equations with confining drift (ENGLISH)
https://forms.gle/SCyZWtfC5bNGadxE8
対面・オンラインハイブリッド開催(通常と開催曜日が異なりますのでご注意下さい)
Alessio Porretta 氏 (University of Rome Tor Vergata)
Long time decay of Fokker-Planck equations with confining drift (ENGLISH)
[ 講演概要 ]
The convergence to equilibrium of Fokker-Planck equations with confining drift is a classical issue, starting with the basic model of the Ornstein-Uhlenbeck process. I will discuss a new approach to obtain estimates on the time decay rate, which applies to both local and nonlocal diffusions. This is based on duality arguments and oscillation estimates for transport-diffusion equations, which are reminiscent of coupling methods used in probabilistic approaches.
[ 参考URL ]The convergence to equilibrium of Fokker-Planck equations with confining drift is a classical issue, starting with the basic model of the Ornstein-Uhlenbeck process. I will discuss a new approach to obtain estimates on the time decay rate, which applies to both local and nonlocal diffusions. This is based on duality arguments and oscillation estimates for transport-diffusion equations, which are reminiscent of coupling methods used in probabilistic approaches.
https://forms.gle/SCyZWtfC5bNGadxE8
2023年02月06日(月)
16:00-18:10 数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催(通常と開催曜日が異なりますのでご注意下さい)
Marek Fila 氏 (Comenius University) 16:00-17:00
Solutions with moving singularities for nonlinear diffusion equations (ENGLISH)
Fast diffusion equation: uniqueness of solutions with a moving singularity (ENGLISH)
https://forms.gle/nKa4XATuuGPwZWbUA
対面・オンラインハイブリッド開催(通常と開催曜日が異なりますのでご注意下さい)
Marek Fila 氏 (Comenius University) 16:00-17:00
Solutions with moving singularities for nonlinear diffusion equations (ENGLISH)
[ 講演概要 ]
We give a survey of results on solutions with singularities moving along a prescribed curve for equations of fast diffusion or porous medium type. These results were obtained in collaboration with J.R. King, P. Mackova, J. Takahashi and E. Yanagida.
Petra Mackova 氏 (Comenius University) 17:10-18:10We give a survey of results on solutions with singularities moving along a prescribed curve for equations of fast diffusion or porous medium type. These results were obtained in collaboration with J.R. King, P. Mackova, J. Takahashi and E. Yanagida.
Fast diffusion equation: uniqueness of solutions with a moving singularity (ENGLISH)
[ 講演概要 ]
This talk focuses on open questions in the area of the uniqueness of distributional solutions of the fast diffusion equation with a given source term. The existence of different sets of such solutions is known from previous research, and the natural next issue is to examine their uniqueness. Assuming that the source term is a measure, the existence of different classes of solutions is known, however, their uniqueness is an open problem. The existence of a class of asymptotically radially symmetric solutions with a singularity that moves along a prescribed curve was proved by M. Fila, J. Takahashi, and E. Yanagida. More recently, it has been established by M. Fila, P. M., J. Takahashi, and E. Yanagida that these solutions solve the corresponding problem with a moving Dirac source term. In this talk, we discuss the uniqueness of these solutions. This is a joint work with M. Fila.
[ 参考URL ]This talk focuses on open questions in the area of the uniqueness of distributional solutions of the fast diffusion equation with a given source term. The existence of different sets of such solutions is known from previous research, and the natural next issue is to examine their uniqueness. Assuming that the source term is a measure, the existence of different classes of solutions is known, however, their uniqueness is an open problem. The existence of a class of asymptotically radially symmetric solutions with a singularity that moves along a prescribed curve was proved by M. Fila, J. Takahashi, and E. Yanagida. More recently, it has been established by M. Fila, P. M., J. Takahashi, and E. Yanagida that these solutions solve the corresponding problem with a moving Dirac source term. In this talk, we discuss the uniqueness of these solutions. This is a joint work with M. Fila.
https://forms.gle/nKa4XATuuGPwZWbUA
2022年11月24日(木)
16:00-17:30 数理科学研究科棟(駒場) 370号室
対面・オンラインハイブリッド開催
板倉 恭平 氏 (東京大学 大学院数理科学研究科)
シュタルク・シュレディンガー作用素に対する放射条件評価と定常散乱理論 (Japanese)
https://forms.gle/admRaVnmPjFyp5op9
対面・オンラインハイブリッド開催
板倉 恭平 氏 (東京大学 大学院数理科学研究科)
シュタルク・シュレディンガー作用素に対する放射条件評価と定常散乱理論 (Japanese)
[ 講演概要 ]
本講演では1体粒子系のシュタルク・シュレディンガー作用素に対し,古典力学から類推される最良な重み付き放射条件評価の導出を行い,これを土台として定常波動作用素の存在性と完全性を調べる.さらに関連する話題として,定常散乱行列のユニタリ性,一般化フーリエ変換の構成,および最小増大度をもつ一般化固有関数に対する定常散乱行列と近似外向・内向波を用いた空間遠方での漸近挙動の特徴づけについても考察する.本研究では,対応する古典力学を適切に反映させたエスケープ関数と,それに付随するアグモン-ヘルマンダー空間の使用が肝要となる.本講演の内容は足立匡義氏(京都大学),伊藤健一氏(東京大学),Skibsted Erik氏(オーフス大学)との共同研究に基づく.
[ 参考URL ]本講演では1体粒子系のシュタルク・シュレディンガー作用素に対し,古典力学から類推される最良な重み付き放射条件評価の導出を行い,これを土台として定常波動作用素の存在性と完全性を調べる.さらに関連する話題として,定常散乱行列のユニタリ性,一般化フーリエ変換の構成,および最小増大度をもつ一般化固有関数に対する定常散乱行列と近似外向・内向波を用いた空間遠方での漸近挙動の特徴づけについても考察する.本研究では,対応する古典力学を適切に反映させたエスケープ関数と,それに付随するアグモン-ヘルマンダー空間の使用が肝要となる.本講演の内容は足立匡義氏(京都大学),伊藤健一氏(東京大学),Skibsted Erik氏(オーフス大学)との共同研究に基づく.
https://forms.gle/admRaVnmPjFyp5op9
2022年06月30日(木)
16:00-17:00 オンライン開催
Xingzhi Bian 氏 (Shanghai University)
A brief introduction to a class of new phase field models (English)
https://forms.gle/esc7Y6KGASwbFro97
Xingzhi Bian 氏 (Shanghai University)
A brief introduction to a class of new phase field models (English)
[ 講演概要 ]
Existence of weak solutions for a type of new phase field models, which are the system consisting of a degenerate parabolic equation of order parameter coupled to a linear elasticity sub-system. The models are applied to describe the phase transitions in elastically deformable solids.
[ 参考URL ]Existence of weak solutions for a type of new phase field models, which are the system consisting of a degenerate parabolic equation of order parameter coupled to a linear elasticity sub-system. The models are applied to describe the phase transitions in elastically deformable solids.
https://forms.gle/esc7Y6KGASwbFro97


本文印刷
全画面プリント







