過去の記録 ~02/06次回の予定今後の予定 02/07~

開催情報 木曜日 16:00~17:30 数理科学研究科棟(駒場) 002号室
担当者 石毛 和弘



16:00-18:10   数理科学研究科棟(駒場) 126号室
Marek Fila 氏 (Comenius University) 16:00-17:00
Solutions with moving singularities for nonlinear diffusion equations (ENGLISH)
[ 講演概要 ]
We give a survey of results on solutions with singularities moving along a prescribed curve for equations of fast diffusion or porous medium type. These results were obtained in collaboration with J.R. King, P. Mackova, J. Takahashi and E. Yanagida.
Petra Mackova 氏 (Comenius University) 17:10-18:10
Fast diffusion equation: uniqueness of solutions with a moving singularity (ENGLISH)
[ 講演概要 ]
This talk focuses on open questions in the area of the uniqueness of distributional solutions of the fast diffusion equation with a given source term. The existence of different sets of such solutions is known from previous research, and the natural next issue is to examine their uniqueness. Assuming that the source term is a measure, the existence of different classes of solutions is known, however, their uniqueness is an open problem. The existence of a class of asymptotically radially symmetric solutions with a singularity that moves along a prescribed curve was proved by M. Fila, J. Takahashi, and E. Yanagida. More recently, it has been established by M. Fila, P. M., J. Takahashi, and E. Yanagida that these solutions solve the corresponding problem with a moving Dirac source term. In this talk, we discuss the uniqueness of these solutions. This is a joint work with M. Fila.
[ 参考URL ]


16:00-17:30   数理科学研究科棟(駒場) 370号室
板倉 恭平 氏 (東京大学 大学院数理科学研究科)
シュタルク・シュレディンガー作用素に対する放射条件評価と定常散乱理論 (Japanese)
[ 講演概要 ]
本講演では1体粒子系のシュタルク・シュレディンガー作用素に対し,古典力学から類推される最良な重み付き放射条件評価の導出を行い,これを土台として定常波動作用素の存在性と完全性を調べる.さらに関連する話題として,定常散乱行列のユニタリ性,一般化フーリエ変換の構成,および最小増大度をもつ一般化固有関数に対する定常散乱行列と近似外向・内向波を用いた空間遠方での漸近挙動の特徴づけについても考察する.本研究では,対応する古典力学を適切に反映させたエスケープ関数と,それに付随するアグモン-ヘルマンダー空間の使用が肝要となる.本講演の内容は足立匡義氏(京都大学),伊藤健一氏(東京大学),Skibsted Erik氏(オーフス大学)との共同研究に基づく.
[ 参考URL ]


16:00-17:00   オンライン開催
Xingzhi Bian 氏 (Shanghai University)
A brief introduction to a class of new phase field models (English)
[ 講演概要 ]
Existence of weak solutions for a type of new phase field models, which are the system consisting of a degenerate parabolic equation of order parameter coupled to a linear elasticity sub-system. The models are applied to describe the phase transitions in elastically deformable solids.
[ 参考URL ]


16:00-17:30   オンライン開催
三宅庸仁 氏 (東大数理)
Effect of decay rates of initial data on the sign of solutions to Cauchy problems of some higher order parabolic equations (Japanese)
[ 講演概要 ]
本講演では高階放物型方程式に対する初期値問題の解の正値性について考察する. 二階放物型問題では, 「非負である任意の初期値に対する解は時空大域的に正値となる」という正値性保存則が広く成立することが知られている. 一方で高階放物型問題においては, 最も単純な重調和熱方程式に対する初期値問題においてさえ, 正値性保存則は一般に成立しない. 同問題の正値性に関する一般次元における結果としては, 時間終局的かつ空間局所的な正値性が成り立つような初期値のクラスが幾つか構成されているのみである.本講演では, 多重調和熱方程式に対する初期値問題の解が時空間大域的に正値関数となるための初期値に対する十分条件を与える. また, 初期値の空間遠方での減衰速度に応じて解が時間終局的かつ空間大域的に正値となるか否か別れることを示す. さらに, 冪乗型非線形項をもつ半線形多重調和熱方程式の初期値問題に対して同様の性質を有する解を構成する. なお, 本講演の内容の一部は, Hans-Christoph Grunau 氏 (University of Magdeburg) と岡部真也氏 (東北大学) との共同研究に基づく.
[ 参考URL ]


16:00-17:00   オンライン開催
Zhanpeisov Erbol 氏 (東大数理)
Existence of solutions for fractional semilinear parabolic equations in Besov-Morrey spaces (Japanese)
[ 講演概要 ]
[ 参考URL ]


16:00-17:00   オンライン開催
寺井健悟 氏 (東大数理)
[ 講演概要 ]
平均場ゲーム理論から導出される1階のハミルトン・ヤコビ・ベルマン方程式と連続方程式の連立系を扱い,割引率をゼロに近づけたときの解の漸近挙動を考察する.この漸近問題の特徴は極限方程式が多重解を持つことであり,部分列に依らず解が収束するか否かは非自明である.本講演では,弱解のコンパクト性および収束の意味での安定性を示し, 任意の収束部分列の極限が満たすべき条件を与える. そしてこれを用いて部分列に依らず解が収束する具体例を紹介する.本講演は三竹大寿氏(東京大学)との共同研究に基づく.
[ 参考URL ]


16:00-17:30   オンライン開催
清水雄貴 氏 (東大数理)
Euler方程式のカレント値弱解とその応用 (日本語)
[ 講演概要 ]
[ 参考URL ]


16:00-17:00   オンライン開催
Xiaodan Zhou 氏 (OIST)
Quasiconformal and Sobolev mappings on metric measure
[ 講演概要 ]
The study of quasiconformal mappings has been an important and active topic since its introduction in the 1930s and the theory has been widely applied to different fields including differential geometry, harmonic analysis, PDEs, etc. In the Euclidean space, it is a fundamental result that three definitions (metric, geometric and analytic) of quasiconformality are equivalent. The theory of quasiconformal mappings has been extended to metric measure spaces by Heinonen and Koskela in the 1990s and their work laid the foundation of analysis on metric spaces. In general, the equivalence of the three characterizations will no longer hold without appropriate assumptions on the spaces and mappings. It is a question of general interest to find minimal assumptions on the metric spaces and on the mapping to guarantee the metric definition implies the analytic characterization or geometric characterization. In this talk, we will give an brief review of the above mentioned classical theory and present some recent results we achieved in obtaining the analytic property, in particular, the Sobolev regularity of a metric quasiconformal mapping with relaxed spaces and mapping conditions. Unexpectedly, we can apply this to prove results that are new even in the classical Euclidean setting. This is joint work with Panu Lahti (Chinese Academy of Sciences).
[ 参考URL ]


16:00-17:00   オンライン開催
立石 優二郎 氏 (東大数理)
逆二乗冪ポテンシャル項を持つ Schrödinger 熱半群に対する最適時間減衰評価 (Japanese)
[ 講演概要 ]
本講演では, 逆二乗冪ポテンシャル項を持つ楕円型作用素に対して, その熱半群及び導関数に対して作用素ノルムの時間減衰評価を考える. 楕円型作用素の正値調和関数の可積分性は熱半群の時間減衰率と密接な関係があり, 本研究では, 球面調和関数を利用した初期データのフーリエ級数展開によって, ポテンシャル項付き熱方程式の空間球対称解及び付随する正値調和関数の解析に帰着させる方法をとる. 結果として, 熱半群及びその導関数の Lorentz 空間上の作用素ノルムについて, 最適な時間減衰評価を導出した. 本講演は石毛和弘氏 (東京大学) との共同研究に基づく.
[ 参考URL ]


16:00-17:00   オンライン開催
Dongyuan Xiao 氏 (Univ. of Montpellier・IMAG)
Lotka-Volterra competition-diffusion system: the critical case
[ 講演概要 ]
We consider the reaction-diffusion competition system u_t=u_{xx}+u(1-u-v), v_t=dv_{xx}+rv(1-v-u), which is the so-called critical case. The associated ODE system then admits infinitely many equilibria, which makes the analysis quite intricate. We first prove the non-existence of monotone traveling waves by applying the phase plane analysis. Next, we study the long time behavior of the solution of the Cauchy problem with a compactly supported initial datum. We not only reveal that the ''faster'' species excludes the ''slower'' species (with an identified ''spreading speed''), but also provide a sharp description of the profile of the solution, thus shedding light on a new ''bump phenomenon''.
[ 参考URL ]


16:00-17:00   オンライン開催
柴田将敬 氏 (名城大学理工学部)
メトリックグラフ上の半線形楕円型方程式の正値解について (Japanese)
[ 講演概要 ]
[ 参考URL ]


16:30-18:00   オンライン開催
高津飛鳥 氏 (東京都立大学理学部)
有限状態の最適輸送問題に対するBregmanダイバージェンスによる凸緩和 (Japanese)
[ 講演概要 ]
近年、M.Cuturi (2013)によって、Kullback--Leiblerダイバージェンスを用いた最適輸送問題の凸緩和と
[ 参考URL ]


16:00-17:30   オンライン開催
宮本安人 氏 (東大数理)
優臨界楕円型方程式の球対称特異解と分岐構造 (Japanese)
[ 講演概要 ]
[ 参考URL ]


16:00-17:30   数理科学研究科棟(駒場) オンライン開催 号室
館山翔太 氏 (東京大学大学院数理科学研究科)
Hölder gradient estimates on L^p-viscosity solutions of fully nonlinear parabolic equations with VMO coefficients (Japanese)
[ 講演概要 ]
We discuss fully nonlinear second-order uniformly parabolic equations, including parabolic Isaacs equations. Isaacs equations arise in the theory of stochastic differential games. In 2014, N.V. Krylov proved the existence of L^p-viscosity solutions of boundary value problems for equations with VMO (vanishing mean oscillation) “coefficients” when p>n+2. Furthermore, the solutions were in the parabolic Hölder space C^{1,α} for 0<α<1. Our purpose is to show C^{1,α} estimates on L^p-viscosity solutions of fully nonlinear parabolic equations under the same conditions as in Krylov’s result.
[ 参考URL ]


16:00-17:30   数理科学研究科棟(駒場) オンライン開催 号室
向井晨人 氏 (東京大学大学院数理科学研究科)
Refined construction of Type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity (Japanese)
[ 講演概要 ]
本講演ではある非線型放物型方程式に対する爆発現象に焦点を当てる. 藤田型方程式に対する結果として著名な Herrero–Vel´azquez (1994) では, Joseph–Lundgren 優臨界のときに球対称な Type II 爆発解の存在を接合漸近展開法に依って示した. 本研究ではこれに倣い, より精密な評価を以て改良を図る. この手法は非線型項にポテンシャルを付与した問題に対して適用可能であり, 結果としてポテンシャルの零点で爆発する解を構成した. 尚、本講演は大阪市立大学の関行宏先生との共同研究に基づく.
[ 参考URL ]


16:00-17:30   数理科学研究科棟(駒場) 128 号室
可香谷隆 氏 (九州大学)
接触角条件付き表面拡散に対する進行波解の非一意性と非凸性について (Japanese)
[ 講演概要 ]


16:00-17:30   数理科学研究科棟(駒場) 128 (TBD)号室
Marius Ghergu 氏 (University College Dublin)
Behaviour around the isolated singularity for solutions of some nonlinear elliptic inequalities and systems (English)
[ 講演概要 ]
We present some results on the behaviour around the isolated singularity for solutions of nonlinear elliptic inequalities driven by the Laplace operator. We derive optimal conditions that imply either a blow-up or the existence of pointwise bounds for solutions. We obtain that whenever a pointwise bound exists, then an optimal bound is given by the fundamental solution of the Laplace operator. This situation changes in case of systems of inequalities where other types of optimal bounds may occur. The approach relies on integral representation of solutions combined with various nonlinear potential estimates. Further extensions to the parabolic case will be presented. This talk is based on joint works with S. Taliaferro (Texas A&M University) and I. Verbitsky (Missouri University).


16:00-17:30   数理科学研究科棟(駒場) 128号室
オム ジュンヨン 氏 (東京大学)
非線形放物型方程式系に対するODE型解の漸近展開 (Japanese)
[ 講演概要 ]
本講演では, 弱連立非線形放物型方程式系を考え,常微分方程式系の解の様に振る舞う解(ODE型解)の時間大域挙動を調べる.ODE解の挙動によって誘発されるある変換によって導かれる方程式系はある特別な構造を持ち,その構造とスカラー方程式の解の高次漸近展開理論を用いてODE型解の漸近挙動はある熱方程式の解を用いて表現できる.結果としてODE型解の漸近挙動はシステム特有の性質を有することが証明できる.本講演は石毛和弘氏(東京大学)との共同研究に基づく.


16:00-17:30   数理科学研究科棟(駒場) 118号室
北川 潤 氏 (ミシガン州立大学)
最適輸送問題における自由境界の正則性および安定性について (Japanese)
[ 講演概要 ]
最適輸送(モンジュ・カントロビッチ)問題では台が連結な測度を台が非連結なものへと輸送した場合、輸送写像はもちろん不連続である.このような場合に発生する不連続点の集合はモンジュ・アンペール方程式の特異点集合と一致し、一種の自由境界としてとらえられる.このような特異点集合の正則性、次元、および安定性について話す.本講演はR. McCann氏(Univ. of Toronto)との共同研究に基づく.


16:00-18:00   数理科学研究科棟(駒場) 118号室
Matteo Muratori 氏 (Polytechnic University of Milan) 16:00-17:00
The porous medium equation on noncompact Riemannian manifolds with initial datum a measure
[ 講演概要 ]
We investigate existence and uniqueness of weak solutions of the Cauchy problem for the porous medium equation on Cartan-Hadamard manifolds. We show existence of solutions that take a finite Radon measure as initial datum, possibly sign-changing. We then prove uniqueness in the class of nonnegative solutions, upon assuming a quadratic lower bound on the Ricci curvature. Our result is "optimal" in the sense that any weak solution necessarily solves a Cauchy problem with initial datum a finite Radon measure. Moreover, as byproducts of the techniques we employ, we obtain some new results in potential analysis on manifolds, concerning the validity of a modified version of the mean-value inequality for superharmonic functions and related properties of potentials of positive Radon measures. Finally, we briefly discuss some work in progress regarding stability of the porous medium equation with respect to the Wasserstein distance, on Riemannian manifolds with Ricci curvature bounded below.
Maurizia Rossi 氏 (University of Pisa) 17:00-18:00
On sharp large deviations for the bridge of a general diffusion
[ 講演概要 ]
In this talk we provide sharp Large Deviation estimates for the probability of exit from a domain for the bridge of a d-dimensional general diffusion process X, as the conditioning time tends to 0. This kind of results is motivated by applications to numerical simulation. In particular we investigate the influence of the drift b of X. It turns out that the sharp asymptotics for the exit time probability are independent of the drift, provided b enjoyes a simple condition that is always satisfied in dimension 1. On the other hand, we show that the drift can be influential if this assumption is not satisfied. This talk is based on a joint work with P. Baldi and L. Caramellino.


16:00-17:30   数理科学研究科棟(駒場) 118号室
林 仲夫 氏 (大阪大学)
Inhomogeneous Dirichlet-boundary value problem for one dimensional nonlinear Schr\"{o}dinger equations (Japanese)
[ 講演概要 ]
We consider the inhomogeneous Dirichlet-boundary value problem for the cubic nonlinear Schr\"{o}dinger equations on the half line. We present sufficient conditions of initial and boundary data which ensure asymptotic behavior of small solutions to equations by using the classical energy method and factorization techniques.


16:00-17:30   数理科学研究科棟(駒場) 118号室
柏原崇人 氏 (東京大学)
Navier-Stokes方程式に対する摩擦型境界条件とその周辺 (Japanese)
[ 講演概要 ]
非圧縮流体の支配方程式であるNavier-Stokes方程式を考える際,壁面における境界条件としては滑りなし条件(斉次Dirichlet境界条件)を課すことが多い.一方で,現実の複雑な問題を数値シミュレーション等で扱う際には,滑りがある場合とない場合が共存するような状況を考えたいことがある.摩擦型境界条件はそのような状況をモデル化した非線形な境界条件であり,1994年にH. Fujitaによって導入された.本講演の前半では,定常Stokes方程式に対する摩擦型境界条件問題の数値解析(特に有限要素法による誤差評価)および,非定常Navier-Stokes方程式に対する同問題の数学解析(時間局所的な強解の存在と一意性)の結果を紹介したい.時間が許せば,現在考察中のトピックとして,Serrinの摩擦型境界条件や,摩擦型の(境界条件ではなく)interface問題の定式化について述べたい.


16:00-17:30   数理科学研究科棟(駒場) 118号室
山本 宏子 氏 (東京大学)
いくつかの微分方程式に対する反応拡散近似 (Japanese)
[ 講演概要 ]
本研究は,二宮広和氏(明治大学),田中吉太郎氏(はこだて未来大学)との共同研究に基づく結果を含んだものである.反応拡散系は連立の非線型放物型方程式で表され,化学反応系や燃焼系,生物系など,多くのモデル方程式に現れる.本研究では,反応拡散系の解の大域的挙動や方程式のクラスを調べることを目的として,反応拡散系により近似可能な方程式系を考察する.この近似は反応拡散近似と呼ばれる.例えばD. Hilhorst, R. van der Hout, L. A. Peletier(1996)により,単純な二成分の反応拡散系の解は,一相Stefan問題の近似解になることが示された.また非線型拡散問題に関しては,交差拡散系と呼ばれる準線型放物型方程式の解の近似を行った飯田-三村-二宮(2006)や,多孔性媒質方程式などの退化する非線型拡散問題の解析の難しさを解消した村川(2007)などの結果が知られている.本講演では,ある非局所発展方程式と半線形波動方程式の反応拡散近似に関する結果を報告する.


16:00-17:30   数理科学研究科棟(駒場) 118号室
生駒 典久 氏 (慶應義塾大学)
Uniqueness and nondegeneracy of ground states to scalar field equation involving critical Sobolev exponent
[ 講演概要 ]
This talk is devoted to studying the uniqueness and nondegeneracy of ground states to a nonlinear scalar field equation on the whole space. The nonlinearity consists of two power functions, and their growths are subcritical and critical in the Sobolev sense respectively. Under some assumptions, it is known that the equation admits a positive radial ground state and other ground states are made from the positive radial one. We show that if the dimensions are greater than or equal to 5 and the frequency is sufficiently large, then the positive radial ground state is unique and nondegenerate. This is based on joint work with Takafumi Akahori (Shizuoka Univ.), Slim Ibrahim (Univ. of Victoria), Hiroaki Kikuchi (Tsuda Univ.) and Hayato Nawa (Meiji Univ.).


16:00-17:30   数理科学研究科棟(駒場) 128号室
柳田英二 氏 (東京工業大学)
Sign-changing solutions for a one-dimensional semilinear parabolic problem (Japanese)
[ 講演概要 ]
This talk is concerned with a nonlinear parabolic equation on a bounded interval with the homogeneous Dirichlet or Neumann boundary condition. Under rather general conditions on the nonlinearity, we consider the blow-up and global existence of sign-changing solutions. It is shown that there exists a nonnegative integer $k$ such that the solution blows up in finite time if the initial value changes its sign at most $k$ times, whereas there exists a stationary solution with more than $k$ zeros. The proof is based on an intersection number argument combined with a topological method.

12345 次へ >