応用解析セミナー
過去の記録 ~07/01|次回の予定|今後の予定 07/02~
開催情報 | 木曜日 16:00~17:30 数理科学研究科棟(駒場) 002号室 |
---|---|
担当者 | 石毛 和弘 |
過去の記録
2010年07月08日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
Anna Vainchtein 氏 (University of Pittsburgh, Department of Mathematics)
Effect of nonlinearity on the steady motion of a twinning dislocation (ENGLISH)
Anna Vainchtein 氏 (University of Pittsburgh, Department of Mathematics)
Effect of nonlinearity on the steady motion of a twinning dislocation (ENGLISH)
[ 講演概要 ]
We consider the steady motion of a twinning dislocation in a Frenkel-Kontorova lattice with a double-well substrate potential that has a non-degenerate spinodal region. Semi-analytical traveling wave solutions are constructed for the piecewise quadratic potential, and their stability and further effects of nonlinearity are investigated numerically. We show that the width of the spinodal region and the nonlinearity of the potential have a significant effect on the dislocation kinetics, resulting in stable steady motion in some low-velocity intervals and lower propagation stress. We also conjecture that a stable steady propagation must correspond to an increasing portion of the kinetic relation between the applied stress and dislocation velocity.
We consider the steady motion of a twinning dislocation in a Frenkel-Kontorova lattice with a double-well substrate potential that has a non-degenerate spinodal region. Semi-analytical traveling wave solutions are constructed for the piecewise quadratic potential, and their stability and further effects of nonlinearity are investigated numerically. We show that the width of the spinodal region and the nonlinearity of the potential have a significant effect on the dislocation kinetics, resulting in stable steady motion in some low-velocity intervals and lower propagation stress. We also conjecture that a stable steady propagation must correspond to an increasing portion of the kinetic relation between the applied stress and dislocation velocity.
2010年06月24日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
GCOE 共催
村川 秀樹 氏 (富山大学大学院理工学研究部)
非線形拡散問題の反応拡散系近似 (JAPANESE)
GCOE 共催
村川 秀樹 氏 (富山大学大学院理工学研究部)
非線形拡散問題の反応拡散系近似 (JAPANESE)
[ 講演概要 ]
氷の融解・水の凝固の過程を記述するステファン問題、地下水の流れを表す多孔質媒体流方程式、2種生物種の競合問題における互いの動的な干渉作用を記述する重定-川崎-寺本交差拡散系など、様々な問題を含む非線形拡散問題を取り扱う。本講演では、非線形拡散問題の解が、拡散が線形である半線形反応拡散系の解により近似されることを示す。この結果は、非線形拡散問題の解構造が、ある種の半線形反応拡散系の中に再現されることを示唆するものである。一般に、非線形問題を扱うよりも半線形問題を取り扱う方が容易であるため、本研究は非線形問題の解析や数値解析に応用できることが期待される。
氷の融解・水の凝固の過程を記述するステファン問題、地下水の流れを表す多孔質媒体流方程式、2種生物種の競合問題における互いの動的な干渉作用を記述する重定-川崎-寺本交差拡散系など、様々な問題を含む非線形拡散問題を取り扱う。本講演では、非線形拡散問題の解が、拡散が線形である半線形反応拡散系の解により近似されることを示す。この結果は、非線形拡散問題の解構造が、ある種の半線形反応拡散系の中に再現されることを示唆するものである。一般に、非線形問題を扱うよりも半線形問題を取り扱う方が容易であるため、本研究は非線形問題の解析や数値解析に応用できることが期待される。
2010年06月10日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
Christian Klingenberg 氏 (Wuerzburg 大学 )
Hydrodynamic limit of microscopic particle systems to conservation laws to fluid models
Christian Klingenberg 氏 (Wuerzburg 大学 )
Hydrodynamic limit of microscopic particle systems to conservation laws to fluid models
[ 講演概要 ]
In this talk we discuss the hydrodynamic limit of a microscopic description of a fluid to its macroscopic PDE description.
In the first part we consider flow through porous media, i.e. the macroscopic description is a scalar conservation law. Here the new feature is that we allow sudden changes in porosity and thereby the flux may have discontinuities in space. Microscopically this is described through an interacting particle system having only one conserved quantity, namely the total mass. Macroscopically this gives rise to a scalar conservation laws with space dependent flux functions
u_t + f(u, x)_x = 0 .
We are able to derive the PDE together with an entropy condition as a hydrodynamic limit from a microscopic interacting particle system.
In the second part we consider a Hamiltonian system with boundary conditions. Microscopically this is described through a system of coupled oscillators. Macroscopically this will lead to a system of conservation laws, namely the p-system. The proof of the hydrodynamic limit is restricted to smooth solutions. The new feature is that we can derive this with boundary conditions.
In this talk we discuss the hydrodynamic limit of a microscopic description of a fluid to its macroscopic PDE description.
In the first part we consider flow through porous media, i.e. the macroscopic description is a scalar conservation law. Here the new feature is that we allow sudden changes in porosity and thereby the flux may have discontinuities in space. Microscopically this is described through an interacting particle system having only one conserved quantity, namely the total mass. Macroscopically this gives rise to a scalar conservation laws with space dependent flux functions
u_t + f(u, x)_x = 0 .
We are able to derive the PDE together with an entropy condition as a hydrodynamic limit from a microscopic interacting particle system.
In the second part we consider a Hamiltonian system with boundary conditions. Microscopically this is described through a system of coupled oscillators. Macroscopically this will lead to a system of conservation laws, namely the p-system. The proof of the hydrodynamic limit is restricted to smooth solutions. The new feature is that we can derive this with boundary conditions.
2010年04月22日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
Jens Starke 氏 (デンマーク工科大学)
Deterministic and stochastic modelling of catalytic surface processes (ENGLISH)
Jens Starke 氏 (デンマーク工科大学)
Deterministic and stochastic modelling of catalytic surface processes (ENGLISH)
[ 講演概要 ]
Three levels of modelling, the microscopic, the mesoscopic and the macroscopic level are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. The macroscopic description can be derived rigorously for low pressure conditions as limit of the stochastic many particle model for large particle numbers. This is in correspondence with the successful description of experiments under low pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena of stochastic origin can be observed in experiments. The introduced models include a new approach for the platinum phase transition which allows for a unification of existing models for Pt(100) and Pt(110).
The rich nonlinear dynamical behaviour of the macroscopic reaction kinetics is investigated and shows good agreement with low pressure experiments. Furthermore, for intermediate pressures, noise-induced pattern formation, so-called raindrop patterns which are not captured by earlier models, can be reproduced and are shown in simulations.
This is joint work with M. Eiswirth, H. Rotermund, G. Ertl,
Frith Haber Institut, Berlin, K. Oelschlaeger, University of
Heidelberg and C. Reichert, INSA, Lyon.
Three levels of modelling, the microscopic, the mesoscopic and the macroscopic level are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. The macroscopic description can be derived rigorously for low pressure conditions as limit of the stochastic many particle model for large particle numbers. This is in correspondence with the successful description of experiments under low pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena of stochastic origin can be observed in experiments. The introduced models include a new approach for the platinum phase transition which allows for a unification of existing models for Pt(100) and Pt(110).
The rich nonlinear dynamical behaviour of the macroscopic reaction kinetics is investigated and shows good agreement with low pressure experiments. Furthermore, for intermediate pressures, noise-induced pattern formation, so-called raindrop patterns which are not captured by earlier models, can be reproduced and are shown in simulations.
This is joint work with M. Eiswirth, H. Rotermund, G. Ertl,
Frith Haber Institut, Berlin, K. Oelschlaeger, University of
Heidelberg and C. Reichert, INSA, Lyon.
2010年04月15日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
Alberto Tesei 氏 (University of Rome 1)
Long-time behaviour of solutions of a forward-backward parabolic equation
Alberto Tesei 氏 (University of Rome 1)
Long-time behaviour of solutions of a forward-backward parabolic equation
[ 講演概要 ]
We discuss some recent results concerning the asymptotic behaviour of entropy measure-valued solutions for a class of ill-posed forward-backward parabolic equations, which arise in the theory of phase transitions.
We discuss some recent results concerning the asymptotic behaviour of entropy measure-valued solutions for a class of ill-posed forward-backward parabolic equations, which arise in the theory of phase transitions.
2010年02月18日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
Bendong LOU 氏 (同済大学)
Homogenization limit of a parabolic equation with nonlinear boundary conditions
Bendong LOU 氏 (同済大学)
Homogenization limit of a parabolic equation with nonlinear boundary conditions
[ 講演概要 ]
We consider a quasilinear parabolic equation with the following nonlinear Neumann boundary condition:
"the slope of the solution on the boundary is a function $g$ of the value of the solution". Here $g$ takes values near its supremum with the frequency of $\\epsilon$. We show that the homogenization limit of the solution, as $\\epsilon$ tends to 0, is the solution satisfying the linear Neumann boundary condition: "the slope of the solution on the boundary is the supremum of $g$".
We consider a quasilinear parabolic equation with the following nonlinear Neumann boundary condition:
"the slope of the solution on the boundary is a function $g$ of the value of the solution". Here $g$ takes values near its supremum with the frequency of $\\epsilon$. We show that the homogenization limit of the solution, as $\\epsilon$ tends to 0, is the solution satisfying the linear Neumann boundary condition: "the slope of the solution on the boundary is the supremum of $g$".
2010年01月28日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
清水扇丈 氏 (静岡大学理学部)
相転移を伴う非圧縮性2相流の線形化問題について
清水扇丈 氏 (静岡大学理学部)
相転移を伴う非圧縮性2相流の線形化問題について
[ 講演概要 ]
氷が常圧で0度以上になると水になるなどの相転移を伴う非圧縮性2相流に対し,質量保存則, 運動量保存則, エネルギー保存則を界面を含む系全体に適用し, 線形化した方程式系について考察する. 本講演では, 線形化方程式系のL_p-L_q 最大正則性定理について述べる.
密度が異なる場合は, 法線方向の高さ関数は表面張力つき2相Stokes問題の高さ関数と同じ正則性をもち, 系は流速が支配するのに対し,密度が等しい場合は, Gibbs-Thomson補正された表面張力つき2相Stefan問題の高さ関数と同じ正則性をもち, 系は温度が支配する.
氷が常圧で0度以上になると水になるなどの相転移を伴う非圧縮性2相流に対し,質量保存則, 運動量保存則, エネルギー保存則を界面を含む系全体に適用し, 線形化した方程式系について考察する. 本講演では, 線形化方程式系のL_p-L_q 最大正則性定理について述べる.
密度が異なる場合は, 法線方向の高さ関数は表面張力つき2相Stokes問題の高さ関数と同じ正則性をもち, 系は流速が支配するのに対し,密度が等しい場合は, Gibbs-Thomson補正された表面張力つき2相Stefan問題の高さ関数と同じ正則性をもち, 系は温度が支配する.
2010年01月21日(木)
16:00-17:30 数理科学研究科棟(駒場) 122号室
Danielle Hilhorst 氏 (パリ南大学 / CNRS)
A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation
Danielle Hilhorst 氏 (パリ南大学 / CNRS)
A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation
[ 講演概要 ]
We propose a finite volume method on general meshes for degenerate parabolic convection-reaction-diffusion equations. Such equations arise for instance in the modeling of contaminant transport in groundwater. After giving a convergence proof, we present the results of numerical tests.
We propose a finite volume method on general meshes for degenerate parabolic convection-reaction-diffusion equations. Such equations arise for instance in the modeling of contaminant transport in groundwater. After giving a convergence proof, we present the results of numerical tests.
2009年12月17日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
Hatem Zaag 氏 (CNRS / パリ北大学)
A Liouville theorem for a semilinear heat equation with no gradient structure
Hatem Zaag 氏 (CNRS / パリ北大学)
A Liouville theorem for a semilinear heat equation with no gradient structure
[ 講演概要 ]
We prove a Liouville Theorem for entire solutions of a vector
valued semilinear heat equation with no gradient structure. Classical tools such as the maximum principle or energy techniques break down and have to be replaced by a new approach. These tools involve a very good understanding of the dynamical system formulation of the equation in the selfsimilar setting. Using the Liouville Theorem, we derive uniform estimates for blow-up solutions of the same equation.
We prove a Liouville Theorem for entire solutions of a vector
valued semilinear heat equation with no gradient structure. Classical tools such as the maximum principle or energy techniques break down and have to be replaced by a new approach. These tools involve a very good understanding of the dynamical system formulation of the equation in the selfsimilar setting. Using the Liouville Theorem, we derive uniform estimates for blow-up solutions of the same equation.
2009年11月26日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
小池 茂昭 氏 (埼玉大学・理学部数学科)
L^p 粘性解の弱ハルナック不等式の最近の進展
小池 茂昭 氏 (埼玉大学・理学部数学科)
L^p 粘性解の弱ハルナック不等式の最近の進展
[ 講演概要 ]
Caffarelli による粘性解の regularity 研究 (1989 年) を基に, 1996 年に Caffarelli- Crandall-Kocan-Swiech によって L^p 粘性解の概念が導入された. L^p 粘性解とは, 通 常の粘性解理論では扱えなかった, 非有界非斉次項を持つ (非発散型) 偏微分方程 式にも適用可能な弱解である.
しかしながら, 係数に関しては有界係数しか研究されていなかった. その後, Swiech との共同研究により, 係数が非有界だが適当なべき乗可積分性を仮定して Aleksandrov-Bakelman-Pucci 型の最大値原理を導くことが可能になった.
本講演では, 非有界係数・非斉事項を持った, 完全非線形 2 階一様楕円型方程式 の L^p 粘性解の弱ハルナック不等式に関する最近のSwiech との共同研究の結果を紹 介する.
Caffarelli による粘性解の regularity 研究 (1989 年) を基に, 1996 年に Caffarelli- Crandall-Kocan-Swiech によって L^p 粘性解の概念が導入された. L^p 粘性解とは, 通 常の粘性解理論では扱えなかった, 非有界非斉次項を持つ (非発散型) 偏微分方程 式にも適用可能な弱解である.
しかしながら, 係数に関しては有界係数しか研究されていなかった. その後, Swiech との共同研究により, 係数が非有界だが適当なべき乗可積分性を仮定して Aleksandrov-Bakelman-Pucci 型の最大値原理を導くことが可能になった.
本講演では, 非有界係数・非斉事項を持った, 完全非線形 2 階一様楕円型方程式 の L^p 粘性解の弱ハルナック不等式に関する最近のSwiech との共同研究の結果を紹 介する.
2009年11月05日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
大西 勇 氏 (広島大学大学院理学研究科)
A Mathematical Aspect of the One-Dimensional Keller and Rubinow Model for Liesegang Bands
大西 勇 氏 (広島大学大学院理学研究科)
A Mathematical Aspect of the One-Dimensional Keller and Rubinow Model for Liesegang Bands
[ 講演概要 ]
In 1896, colloid-chemist R.E. Liesegang [4] observed strikingly
regular patterns in precipitation-reaction processes, which are referred to as Liesegang bands or rings, according to their shape. In this talk I introduce an attempt to understand from a mathematical viewpoint the experiments in which regularized structures with spatially distinct bands of precipitated material are exhibited, with clearly visible scaling properties. This study is a result [1] of a collaboration with Professors D. Hilhorst, R. van der Hout, and M. Mimura.
References:
[1] Hilhorst, D., van der Hout, R., Mimura, M., and Ohnishi, I.: A Mathematical Study of the One-Dimensional Keller and Rubinow Model for Liesegang Bands. J. Stat Phys 135: 107-132 (2009)
[2] Kai, S., Muller, S.C.: Spatial and temporal macroscopic structures in chemical reaction system: precipitation patterns and interfacial motion. Sci. Form 1, 8-38 (1985)
[3] Keller, J.B., Rubinow, S.I.: Recurrent precipitation and Liesegang rings. J. Chem. Phys. 74, 5000-5007 (1981)
[4] Liesegang, R.E.: Chemische Fernwirkung. Photo. Archiv 800, 305-309 (1896)
[5] Mimura, M., Ohnishi, I., Ueyama, D.: A mathematical aspect of Liesegang phenomena in two space dimensions. Res. Rep. Res. Inst. Math. Sci. 1499, 185-201 (2006)
[6] Ohnishi, I.,Mimura, M.: A mathematical aspect of Liesegang phenomena. In: Proceedings of Equadiff-11, pp. 343-352 (2005).
In 1896, colloid-chemist R.E. Liesegang [4] observed strikingly
regular patterns in precipitation-reaction processes, which are referred to as Liesegang bands or rings, according to their shape. In this talk I introduce an attempt to understand from a mathematical viewpoint the experiments in which regularized structures with spatially distinct bands of precipitated material are exhibited, with clearly visible scaling properties. This study is a result [1] of a collaboration with Professors D. Hilhorst, R. van der Hout, and M. Mimura.
References:
[1] Hilhorst, D., van der Hout, R., Mimura, M., and Ohnishi, I.: A Mathematical Study of the One-Dimensional Keller and Rubinow Model for Liesegang Bands. J. Stat Phys 135: 107-132 (2009)
[2] Kai, S., Muller, S.C.: Spatial and temporal macroscopic structures in chemical reaction system: precipitation patterns and interfacial motion. Sci. Form 1, 8-38 (1985)
[3] Keller, J.B., Rubinow, S.I.: Recurrent precipitation and Liesegang rings. J. Chem. Phys. 74, 5000-5007 (1981)
[4] Liesegang, R.E.: Chemische Fernwirkung. Photo. Archiv 800, 305-309 (1896)
[5] Mimura, M., Ohnishi, I., Ueyama, D.: A mathematical aspect of Liesegang phenomena in two space dimensions. Res. Rep. Res. Inst. Math. Sci. 1499, 185-201 (2006)
[6] Ohnishi, I.,Mimura, M.: A mathematical aspect of Liesegang phenomena. In: Proceedings of Equadiff-11, pp. 343-352 (2005).
2009年09月17日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
Norayr MATEVOSYAN 氏 (ケンブリッジ大学・数理)
On a parabolic free boundary problem modelling price formation
Norayr MATEVOSYAN 氏 (ケンブリッジ大学・数理)
On a parabolic free boundary problem modelling price formation
[ 講演概要 ]
We will discuss existence and uniqueness of solutions for a one dimensional parabolic evolution equation with a free boundary. This problem was introduced by J.-M. Lasry and P.-L. Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in time-extension of the local solution which is intimately connected to the regularity of the free boundary.
We also present numerical results.
We will discuss existence and uniqueness of solutions for a one dimensional parabolic evolution equation with a free boundary. This problem was introduced by J.-M. Lasry and P.-L. Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in time-extension of the local solution which is intimately connected to the regularity of the free boundary.
We also present numerical results.
2009年09月10日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
Henrik SHAHGHOLIAN 氏 (王立工科大学・ストックホルム)
A two phase free boundary problem with applications in potential theory
Henrik SHAHGHOLIAN 氏 (王立工科大学・ストックホルム)
A two phase free boundary problem with applications in potential theory
[ 講演概要 ]
In this talk I will present some recent directions, still to be developed, in potential theory, that are connected to a two-phase free boundary problems. The potential theoretic topic that I will discuss is the so called Quadrature Domains.
The most simple free boundary/potential problem that we can present is the following. Given constants $a_\\pm, \\lambda_\\pm >0$ and two points $x^\\pm$ in ${\\bf R}^n$. Find a function $u$ such that
$$\\Delta u = \\left( \\lambda_+ \\chi_{\\{u>0 \\}} - a_+\\delta_{x^+}\\right) - \\left( \\lambda_- \\chi_{\\{u<0 \\}} - a_-\\delta_{x^-}\\right),$$
where $\\delta$ is the Dirac mass.
In general this problem is solvable for two Dirac masses. The requirement, somehow implicit in the above equation, is that the support of the measures (in this case the Dirac masses) is to be in included in the positivity and the negativity set (respectively).
In general this problem does not have a solution, and there some strong restrictions on the measures, in order to have some partial results.
In this talk I will present some recent directions, still to be developed, in potential theory, that are connected to a two-phase free boundary problems. The potential theoretic topic that I will discuss is the so called Quadrature Domains.
The most simple free boundary/potential problem that we can present is the following. Given constants $a_\\pm, \\lambda_\\pm >0$ and two points $x^\\pm$ in ${\\bf R}^n$. Find a function $u$ such that
$$\\Delta u = \\left( \\lambda_+ \\chi_{\\{u>0 \\}} - a_+\\delta_{x^+}\\right) - \\left( \\lambda_- \\chi_{\\{u<0 \\}} - a_-\\delta_{x^-}\\right),$$
where $\\delta$ is the Dirac mass.
In general this problem is solvable for two Dirac masses. The requirement, somehow implicit in the above equation, is that the support of the measures (in this case the Dirac masses) is to be in included in the positivity and the negativity set (respectively).
In general this problem does not have a solution, and there some strong restrictions on the measures, in order to have some partial results.
2009年05月14日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
東海林 まゆみ 氏 (日本女子大学・理学部・数物科学科)
Particle trajectories around a running cylinder in Brinkman's porous-media flow
東海林 まゆみ 氏 (日本女子大学・理学部・数物科学科)
Particle trajectories around a running cylinder in Brinkman's porous-media flow
[ 講演概要 ]
Motion of fluid particles provides us with interesting problems of dynamical
systems. We consider here the movement of particles around a running cylinder.
Classically J. C. Maxwell (1870) considered the problem in irrotational flow of
inviscid fluid. He showed that the complete solution is given by the elliptic
functions and the trajectory forms one of the elastica curves. C. Darwin ('53)
considered a similar problem for a moving sphere. In this case, the solution
cannot be written in terms of elliptic functions but can be expressed by a
simple definite integral.
We consider a similar problem in Brinkman's porous-media flow which is proposed
by Brinkman ('49). Our numerical examinations reveals some new interesting
features of the particle trajectories which are not observed in the case of
irrotational flow. We will report them.
Motion of fluid particles provides us with interesting problems of dynamical
systems. We consider here the movement of particles around a running cylinder.
Classically J. C. Maxwell (1870) considered the problem in irrotational flow of
inviscid fluid. He showed that the complete solution is given by the elliptic
functions and the trajectory forms one of the elastica curves. C. Darwin ('53)
considered a similar problem for a moving sphere. In this case, the solution
cannot be written in terms of elliptic functions but can be expressed by a
simple definite integral.
We consider a similar problem in Brinkman's porous-media flow which is proposed
by Brinkman ('49). Our numerical examinations reveals some new interesting
features of the particle trajectories which are not observed in the case of
irrotational flow. We will report them.
2009年04月30日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
池田 幸太 氏 (明治大 研究・知財戦略機構)
ギーラー・マインハルト方程式に対するシャドウ系おける多重スポットの不安定性
池田 幸太 氏 (明治大 研究・知財戦略機構)
ギーラー・マインハルト方程式に対するシャドウ系おける多重スポットの不安定性
[ 講演概要 ]
生物の形態形成に関するモデル方程式である、ギーラー・マインハルト方程式に対するシャドウ系を考える。
この系にはスポットパターンと呼ばれる定常解が存在することが知られており、この解は、その値が非常に大きい点(スポット)を持つこととその近傍の外側では急激に値が減少することにより特徴付けされる。
実は、パラメータと領域を固定しても、単一のスポットだけからなるものや、2つ以上のスポットを持つ定常解、多重スポットが同時に存在しうるが、多重スポットは常に不安定であると予想されている。
本講演では、この予想を数学的に保証するために、多重スポットが適当な条件を満たせば不安定であることを示したい。
生物の形態形成に関するモデル方程式である、ギーラー・マインハルト方程式に対するシャドウ系を考える。
この系にはスポットパターンと呼ばれる定常解が存在することが知られており、この解は、その値が非常に大きい点(スポット)を持つこととその近傍の外側では急激に値が減少することにより特徴付けされる。
実は、パラメータと領域を固定しても、単一のスポットだけからなるものや、2つ以上のスポットを持つ定常解、多重スポットが同時に存在しうるが、多重スポットは常に不安定であると予想されている。
本講演では、この予想を数学的に保証するために、多重スポットが適当な条件を満たせば不安定であることを示したい。
2009年02月05日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
Jin CHENG (程 晋) 氏 (復旦大学)
Heat transfer in composite materials with Stenfen-Boltzmann conditions and related inverse problems
Jin CHENG (程 晋) 氏 (復旦大学)
Heat transfer in composite materials with Stenfen-Boltzmann conditions and related inverse problems
[ 講演概要 ]
In this talk, we will present our recent results on the mathematical model of the heat transfer in the composite materials. The related inverse problems are discussed. The numerical results show our methods are effective.
In this talk, we will present our recent results on the mathematical model of the heat transfer in the composite materials. The related inverse problems are discussed. The numerical results show our methods are effective.
2009年01月29日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
千葉 逸人 氏 (京都大学 情報学研究科)
Extension and Unification of Singular Perturbation Methods for ODE's Based on the Renormalization Gourp Method
千葉 逸人 氏 (京都大学 情報学研究科)
Extension and Unification of Singular Perturbation Methods for ODE's Based on the Renormalization Gourp Method
[ 講演概要 ]
くりこみ群の方法は微分方程式に対する特異摂動法の一種であり,多重尺度法、平均化法、normal forms, 中心多様体縮約、位相縮約、WKB解析などの古くから知られる摂動法を統一的に扱うことができる.ここではくりこみ群の方法を数学的定式化を与え,結合振動子系などへのいくつかの応用も紹介したい.
くりこみ群の方法は微分方程式に対する特異摂動法の一種であり,多重尺度法、平均化法、normal forms, 中心多様体縮約、位相縮約、WKB解析などの古くから知られる摂動法を統一的に扱うことができる.ここではくりこみ群の方法を数学的定式化を与え,結合振動子系などへのいくつかの応用も紹介したい.
2009年01月15日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
木村 正人 氏 (九州大学・大学院数理学研究院)
On a phase field model for mode III crack growth
木村 正人 氏 (九州大学・大学院数理学研究院)
On a phase field model for mode III crack growth
[ 講演概要 ]
2次元弾性体の面外変形による亀裂の進展を記述する,ある
フェイズ・フィールド・モデルについて考える.モデルの
導出は,Francfort-Marigoによる拡張された意味での
Griffithの破壊基準をもとに,Ambrosio-Tortorelliに
よるエネルギー正則化のアイデアを用いてなされる.
現状で得られている数学的な結果と,適合型メッシュを
用いた有限要素シミュレーション例についての紹介も行う.
本研究は高石武史(広島国際学院大学)との共同研究である.
2次元弾性体の面外変形による亀裂の進展を記述する,ある
フェイズ・フィールド・モデルについて考える.モデルの
導出は,Francfort-Marigoによる拡張された意味での
Griffithの破壊基準をもとに,Ambrosio-Tortorelliに
よるエネルギー正則化のアイデアを用いてなされる.
現状で得られている数学的な結果と,適合型メッシュを
用いた有限要素シミュレーション例についての紹介も行う.
本研究は高石武史(広島国際学院大学)との共同研究である.
2008年11月20日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
Jan Haskovec
氏 (Vienna University of Technology(オーストリア))
Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System
Jan Haskovec
氏 (Vienna University of Technology(オーストリア))
Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System
[ 講演概要 ]
We construct an approximation to the measure valued, global in time solutions to the Keller-Segel model in 2D, based on systems of stochastic interacting particles. The advantage of our approach is that it reproduces the well-known dichtomy in the qualitative behavior of the system and, moreover, captures the solution even after the possible blow-up events. We present a numerical method based on this approach and show some numerical results. Moreover, we make a first step toward the convergence analysis of our scheme by proving the convergence of the stochastic particle approximation for the Keller-Segel model with a regularized interaction potential. The proof is based on a BBGKY-like approach for the corresponding particle distribution function.
We construct an approximation to the measure valued, global in time solutions to the Keller-Segel model in 2D, based on systems of stochastic interacting particles. The advantage of our approach is that it reproduces the well-known dichtomy in the qualitative behavior of the system and, moreover, captures the solution even after the possible blow-up events. We present a numerical method based on this approach and show some numerical results. Moreover, we make a first step toward the convergence analysis of our scheme by proving the convergence of the stochastic particle approximation for the Keller-Segel model with a regularized interaction potential. The proof is based on a BBGKY-like approach for the corresponding particle distribution function.
2008年11月13日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
杉山 由恵 氏 (津田塾大学・学芸学部・数学科)
Aronson-Benilan type estimate and the optimal Hoelder continuity of weak solutions for the 1D degenerate Keller-Segel systems
杉山 由恵 氏 (津田塾大学・学芸学部・数学科)
Aronson-Benilan type estimate and the optimal Hoelder continuity of weak solutions for the 1D degenerate Keller-Segel systems
[ 講演概要 ]
We consider the Cauchy problem for the 1D Keller-Segel system of degenerate
type (KS)_m with $m>1$:
u_t= \\partial_x^2 u^m - \\partial_x (u^{q-2} \\partial_x v),
-\\partial_x^2 v + v - u=0.
We establish a uniform estimate from below of $\\partial_x^2 u^{m-1}$.
The corresponding estimate to the porous medium equation is well-known
as an Aronson-Benilan type.
As an application of our Aronson-Benilan type estimate,
we prove the optimal Hoelder continuity of the weak solution $u$ of (KS)_m.
In addition, we find that the positive region $D(t):=\\{x \\in \\R; u(x,t)>0\\}$
of $u$ is monotonically non-decreasing with respect to the time $t$.
We consider the Cauchy problem for the 1D Keller-Segel system of degenerate
type (KS)_m with $m>1$:
u_t= \\partial_x^2 u^m - \\partial_x (u^{q-2} \\partial_x v),
-\\partial_x^2 v + v - u=0.
We establish a uniform estimate from below of $\\partial_x^2 u^{m-1}$.
The corresponding estimate to the porous medium equation is well-known
as an Aronson-Benilan type.
As an application of our Aronson-Benilan type estimate,
we prove the optimal Hoelder continuity of the weak solution $u$ of (KS)_m.
In addition, we find that the positive region $D(t):=\\{x \\in \\R; u(x,t)>0\\}$
of $u$ is monotonically non-decreasing with respect to the time $t$.
2008年10月16日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
Joseph F. Grotowski 氏 (University of Queensland)
Two-dimensional harmonic map heat flow versus four-dimensional Yang-Mills heat flow
Joseph F. Grotowski 氏 (University of Queensland)
Two-dimensional harmonic map heat flow versus four-dimensional Yang-Mills heat flow
[ 講演概要 ]
Harmonic map heat flow and Yang-Mills heat flow are the gradient flows associated to particular energy functionals. In the considered dimension, (i.e. dimension two for the harmonic map heat flow, dimension four for the Yang-Mills heat flow), the associated energy functional is (locally) conformally invariant, that is, the dimension is critical. This leads to a number of interesting phenomena when considering both the functionals and the associated flows. In this talk we discuss qualitative similarities and differences between the flows.
Harmonic map heat flow and Yang-Mills heat flow are the gradient flows associated to particular energy functionals. In the considered dimension, (i.e. dimension two for the harmonic map heat flow, dimension four for the Yang-Mills heat flow), the associated energy functional is (locally) conformally invariant, that is, the dimension is critical. This leads to a number of interesting phenomena when considering both the functionals and the associated flows. In this talk we discuss qualitative similarities and differences between the flows.
2008年07月10日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
渡辺 達也 氏 (早稲田大学・理工学術院)
Two positive solutions for an inhomogeneous scalar field equation
渡辺 達也 氏 (早稲田大学・理工学術院)
Two positive solutions for an inhomogeneous scalar field equation
[ 講演概要 ]
We consider the following nonlinear elliptic equation:
$$-\\Delta u+u=g(u)+f(x), x \\in R^N,$$
where $N\\ge 3$. When $f(x)\\equiv 0$, it is known that there is a nontrivial solution for a wide class of nonlinearities. Even though $f(x) \\not\\equiv 0$, we can expect the existence of a nontrivial solution if $f(x)$ is small in a suitable sense. Our purpose is to show the existence of two positive solutions via the variational approach when $\\| f\\|_{L^2}$ is small. The first solution is characterized as a local minimizer. The second solution will be obtained by the Mountain Pass Method. Since we do not impose any global condition on the nonlinearity, we will need a presice interaction estimate.
We consider the following nonlinear elliptic equation:
$$-\\Delta u+u=g(u)+f(x), x \\in R^N,$$
where $N\\ge 3$. When $f(x)\\equiv 0$, it is known that there is a nontrivial solution for a wide class of nonlinearities. Even though $f(x) \\not\\equiv 0$, we can expect the existence of a nontrivial solution if $f(x)$ is small in a suitable sense. Our purpose is to show the existence of two positive solutions via the variational approach when $\\| f\\|_{L^2}$ is small. The first solution is characterized as a local minimizer. The second solution will be obtained by the Mountain Pass Method. Since we do not impose any global condition on the nonlinearity, we will need a presice interaction estimate.
2008年06月19日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
谷口 雅治 氏 (東京工業大学大学院情報理工学研究科)
Allen-Cahn方程式における角錐型進行波の一意性と安定性
(The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations)
谷口 雅治 氏 (東京工業大学大学院情報理工学研究科)
Allen-Cahn方程式における角錐型進行波の一意性と安定性
(The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations)
[ 講演概要 ]
We study the uniqueness and the asymptotic stability of a pyramidal traveling front in the three-dimensional whole space. For a given admissible pyramid we prove that a pyramidal traveling front is uniquely determined and that it is asymptotically stable under the condition that given perturbations decay at infinity. For this purpose we characterize the pyramidal traveling front as a combination of planar fronts on the lateral surfaces. Moreover we characterize the pyramidal traveling front in another way, that is, we write it as a combination of two-dimensional V-form waves on the edges. This characterization also uniquely determines a pyramidal traveling front.
We study the uniqueness and the asymptotic stability of a pyramidal traveling front in the three-dimensional whole space. For a given admissible pyramid we prove that a pyramidal traveling front is uniquely determined and that it is asymptotically stable under the condition that given perturbations decay at infinity. For this purpose we characterize the pyramidal traveling front as a combination of planar fronts on the lateral surfaces. Moreover we characterize the pyramidal traveling front in another way, that is, we write it as a combination of two-dimensional V-form waves on the edges. This characterization also uniquely determines a pyramidal traveling front.
2008年06月05日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
齊藤 宣一 氏 (東京大学大学院数理科学研究科)
Keller-Segel系に対する離散化手法
齊藤 宣一 氏 (東京大学大学院数理科学研究科)
Keller-Segel系に対する離散化手法
[ 講演概要 ]
細胞性粘菌の凝集現象を記述するモデルとして広く知られるKeller-Segel(KS)系に対して,講演者の提案した保存的上流差分法および有限要素法を紹介したい.これらスキームは,KS系の解の基本性質である正値性保存と質量保存を厳密に再現し,解が凝集による集中化を起こしても安定な計算が遂行可能である.さらに,離散$L^p$空間における離散的解析半群の理論を応用して,陽的な誤差評価が導出される.なお当日の講演では,誤差解析等の理論よりは,離散スキームの構成方法や条件の説明に焦点をおきたい.
細胞性粘菌の凝集現象を記述するモデルとして広く知られるKeller-Segel(KS)系に対して,講演者の提案した保存的上流差分法および有限要素法を紹介したい.これらスキームは,KS系の解の基本性質である正値性保存と質量保存を厳密に再現し,解が凝集による集中化を起こしても安定な計算が遂行可能である.さらに,離散$L^p$空間における離散的解析半群の理論を応用して,陽的な誤差評価が導出される.なお当日の講演では,誤差解析等の理論よりは,離散スキームの構成方法や条件の説明に焦点をおきたい.
2008年05月22日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
森 洋一朗 氏 (University of British Columbia)
細胞生理学における数理研究のいくつかの話題について
森 洋一朗 氏 (University of British Columbia)
細胞生理学における数理研究のいくつかの話題について
[ 講演概要 ]
数理生理学は広汎な分野であり,用いられる手法も近年ますます多様化している.本講演では,数理生理学の中でも古典的な分野である電気生理学の数理モデルに関する最近の研究を紹介する.
電気生理学が対象とするのは細胞および組織レベルでの電気活動であり,これは神経・心・内分泌機能の根幹をなすものである.Hodgkin とHuxley の有名な仕事を契機として,この方面の研究は数理生理学に格好の題材を提供し続けてきた.本講演では,まず電気生理の基礎概念を紹介した後,イオン動態と細胞膜の3次元形状の効果を取り入れたモデルについて解説し,その心臓生理学への応用について語る.さらに時間が許せば,私が今興味を持っている細胞極性の生成,細胞の動きなどの話題についても紹介したい.
数理生理学は広汎な分野であり,用いられる手法も近年ますます多様化している.本講演では,数理生理学の中でも古典的な分野である電気生理学の数理モデルに関する最近の研究を紹介する.
電気生理学が対象とするのは細胞および組織レベルでの電気活動であり,これは神経・心・内分泌機能の根幹をなすものである.Hodgkin とHuxley の有名な仕事を契機として,この方面の研究は数理生理学に格好の題材を提供し続けてきた.本講演では,まず電気生理の基礎概念を紹介した後,イオン動態と細胞膜の3次元形状の効果を取り入れたモデルについて解説し,その心臓生理学への応用について語る.さらに時間が許せば,私が今興味を持っている細胞極性の生成,細胞の動きなどの話題についても紹介したい.