東京幾何セミナー

過去の記録 ~04/21次回の予定今後の予定 04/22~

担当者 二木 昭人(東京工業大学), 今野 宏
セミナーURL http://faculty.ms.u-tokyo.ac.jp/~geometry/kika.html
備考 場所は東大数理(駒場)、東京工業大学(大岡山)のいずれかで行います。
詳細については、上記セミナーURLよりご確認下さい。
「今後の予定」欄には、東工大で行われるセミナーは表示されないのでご注意下さい。

2006年11月08日(水)

14:40-18:00   数理科学研究科棟(駒場) 056号室
梶原 健 氏 (横浜国立大学大学院工学研究院応用数学) 14:40-16:10
代数多様体の退化とトロピカル幾何
[ 講演概要 ]
トロピカル幾何について説明しながら,多様体の退化等との関係や既知の応用について,簡単に紹介します.また,具体的にトロピカル超曲面で記述される退化として,射影トーリック多様体の退化について説明します.ここで現れる退化トーリック多様体は,Alexeev 氏がアーベル多様体のモジュライ空間のコンパクト化の研究において導入した,安定トーリック多様体です.
西納 武男 氏 (京都大学理学研究科数学教室) 16:30-18:00
Counting problem in tropical geometry
[ 講演概要 ]
この講演ではここ数年進展したトロピカル曲線を用いたトーリック多様体上の正則曲線の数え上げについて解説したいと思います.
はじめにトロピカル曲線と正則曲線の関係について,正則曲線のアメーバを介して(Target spaceが複素2次元の場合に)直感的な説明を試みます.トロピカル曲線は実1次元のグラフ状の集合ですが,複素構造のような幾何学的対象の退化を考えると自然に現れます.その考えに基づき,トロピカル曲線がトーリック多様体の退化と自然に関わることと,その事実の数え上げへの応用についてお話ししたいと思います.時間があればディスクの数え上げの場合について,閉曲線の場合との関係などにも触れたいと思います.