トポロジー火曜セミナー
過去の記録 ~12/07|次回の予定|今後の予定 12/08~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也 |
セミナーURL | http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
2006年04月25日(火)
16:30-18:00 数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
合田 洋 氏 (東京農工大学)
Counting closed orbits and flow lines via Heegaard splittings
Tea: 16:00 - 16:30 コモンルーム
合田 洋 氏 (東京農工大学)
Counting closed orbits and flow lines via Heegaard splittings
[ 講演概要 ]
Let K be a fibred knot in the 3-sphere. It is known that the Alexander polynomial of K is essentially equal to a Lefschetz zeta function obtained from the monodromy map of the fibre structure. In this talk, we discuss the non-fibred knot case. We introduce "monodromy matrix" by making use of Heegaard splitting for sutured manifolds of a knot K, and then observe a method of counting closed orbits and flow lines, which gives the Alexander polynomial of K. This observation is based on works of Donaldson and Mark. (joint work with Hiroshi Matsuda and Andrei Pajitnov)
Let K be a fibred knot in the 3-sphere. It is known that the Alexander polynomial of K is essentially equal to a Lefschetz zeta function obtained from the monodromy map of the fibre structure. In this talk, we discuss the non-fibred knot case. We introduce "monodromy matrix" by making use of Heegaard splitting for sutured manifolds of a knot K, and then observe a method of counting closed orbits and flow lines, which gives the Alexander polynomial of K. This observation is based on works of Donaldson and Mark. (joint work with Hiroshi Matsuda and Andrei Pajitnov)