複素解析幾何セミナー

過去の記録 ~11/18次回の予定今後の予定 11/19~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴, 野村 亮介

次回の予定

2017年11月20日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
新田 泰文 氏 (東京工業大学)
Relative GIT stabilities of toric Fano manifolds in low dimensions
[ 講演概要 ]
In 2000, Mabuchi extended the notion of Kaehler-Einstein metrics to Fano manifolds with non-vanishing Futaki invariant. Such a metric is called generalized Kaehler-Einstein metric or Mabuchi metric in the literature. Recently this metrics were rediscovered by Yao in the story of Donaldson's infinite dimensional moment map picture. Moreover, he introduced (uniform) relative Ding stability for toric Fano manifolds and showed that the existence of generalized Kaehler-Einstein metrics is equivalent to its uniform relative Ding stability. This equivalence is in the context of the Yau-Tian-Donaldson conjecture. In this talk, we focus on uniform relative Ding stability of toric Fano manifolds. More precisely, we determine all the uniformly relatively Ding stable toric Fano 3- and 4-folds as well as unstable ones. This talk is based on a joint work with Shunsuke Saito and Naoto Yotsutani.