東京確率論セミナー

過去の記録 ~07/18次回の予定今後の予定 07/19~

開催情報 月曜日 16:00~17:30 数理科学研究科棟(駒場) 126号室
担当者 佐々田 槙子, 久保田 直樹 (日本大学), 阿部 圭宏 (学習院大学)

2018年01月29日(月)

16:00-17:30   数理科学研究科棟(駒場) 128号室
桑江 一洋 氏 (福岡大学 理学部 応用数学教室)
Radial processes on RCD${}^*(K,N)$-spaces (JAPANESE)
[ 講演概要 ]
測度距離空間上において「リッチ曲率が定数K以上かつ次元がN以下」という概念はBakry-Emery の曲率次元条件という定式化で確率論では80年代半ばから知られている。近年、最適輸送理論を用いた曲率次元条件CD(K,N)の概念がLott-Villani, Sturm 等によって提唱され、微分幾何学との相性がよい形で定式化されてきた。しかしながらこの概念はリーマン多様体だけでなく、フィンスラー多様体なども包含しておりラプラシンも非線形になり得る。Ambrosio-Gigli-SavareはCheegerエネルギーが2次形式になるという解析的な性質から空間がリーマン的という条件を定式化し、曲率次元CD(K,N)と合わせてリーマン的曲率次元といい、そのような空間をRCD(K,N)空間と呼んだ。講演では簡約型RCD空間(RCD*(K,N)と記す)と呼ばれる範疇で、同径過程が半マルチンゲールになることを紹介する。すでに最近のCavalletti-Milman の研究でRCD*(K,N)=RCD(K,N)が判明している。古典的には完備リーマン多様体においてKendall が1987年に同径過程をCut-locus 上の局所時間を用いた表現を導出しているが、我々の結果はKendall と同様の表現ではなく、リッチ曲率がK以上であることに準拠した新しい型の表現公式である。そのためには同径関数の参照点についての条件(R2)が必要になるが、その条件はリーマン多様体や非崩壊のリッチ極限空間アレキサンドロフ空間では満たされる。一般のRCD*(K,N)空間ではa.e. の参照点について条件(R2)が満たされることが証明される。

同径過程の表現式の証明の鍵となるのはGigli によるラプラシアンの比較定理とそのことに基づくラプラシアンの表現公式である。さらに参照点についての条件(R2)の下で表現公式に出現する測度が狭義の滑らかな測度になることを熱核の上からの大域的なガウス型評価を用いて示し、それに基づいて同径過程の表現式を全ての出発点について精密化した。

この講演は東北大学の桑田和正氏との共同研究に基づく。