トポロジー火曜セミナー

過去の記録 ~11/18次回の予定今後の予定 11/19~

開催情報 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室
担当者 河野 俊丈, 河澄 響矢, 北山 貴裕, 逆井卓也
セミナーURL http://faculty.ms.u-tokyo.ac.jp/~topology/index.html
備考 Tea: 16:30 - 17:00 コモンルーム

2017年03月10日(金)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00, Lie群論・表現論セミナーと合同
Lizhen Ji 氏 (University of Michigan)
Satake compactifications and metric Schottky problems (ENGLISH)
[ 講演概要 ]
The quotient of the Poincare upper half plane by the modular group SL(2, Z) is a basic locally symmetric space and also the moduli space of compact Riemann surfaces of genus 1, and it admits two important classes of generalization:

(1) Moduli spaces M_g of compact Riemann surfaces of genus g>1,

(2) Arithmetic locally symmetric spaces Γ \ G/K such as the Siegel modular variety A_g, which is also the moduli of principally polarized abelian varieties of dimension g.

There have been a lot of fruitful work to explore the similarity between these two classes of spaces, and there is also a direct interaction between them through the Jacobian (or period) map J: M_g --> A_g. In this talk, I will discuss some results along these lines related to the Stake compactifications and the Schottky problems on understanding the image J(M_g) in A_g from the metric perspective.