代数学コロキウム
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2024年12月11日(水)
17:00-18:00 数理科学研究科棟(駒場) 117号室
大江亮輔 氏 (東京大学大学院数理科学研究科)
The characteristic cycle of an l-adic sheaf on a smooth variety (Japanese)
大江亮輔 氏 (東京大学大学院数理科学研究科)
The characteristic cycle of an l-adic sheaf on a smooth variety (Japanese)
[ 講演概要 ]
The characteristic cycle of an l-adic sheaf on a smooth variety over a perfect field is defined by Saito as a cycle on the cotangent bundle and the intersection with the zero section computes the Euler number. On the other hand, the characteristic cycle of an l-adic sheaf on a regular scheme in mixed characteristic is not yet defined. In this talk, I define the F-characteristic cycle of a rank one sheaf on an arithmetic surface whose intersection with the zero section computes the Swan conductor of the cohomology of the generic fiber. The definition is based on the computation of the characteristic cycle in equal characteristic by Yatagawa. I explain the rationality and the integrality of the characteristic form of an abelian character, which are necessary for the definition of the F-characteristic cycle.
The characteristic cycle of an l-adic sheaf on a smooth variety over a perfect field is defined by Saito as a cycle on the cotangent bundle and the intersection with the zero section computes the Euler number. On the other hand, the characteristic cycle of an l-adic sheaf on a regular scheme in mixed characteristic is not yet defined. In this talk, I define the F-characteristic cycle of a rank one sheaf on an arithmetic surface whose intersection with the zero section computes the Swan conductor of the cohomology of the generic fiber. The definition is based on the computation of the characteristic cycle in equal characteristic by Yatagawa. I explain the rationality and the integrality of the characteristic form of an abelian character, which are necessary for the definition of the F-characteristic cycle.