代数学コロキウム
過去の記録 ~05/02|次回の予定|今後の予定 05/03~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2022年05月25日(水)
17:00-18:00 ハイブリッド開催
数理科学研究科所属以外の方は、オンラインでのご参加をお願いいたします。
松田 光智 氏 (東京大学大学院数理科学研究科)
Torsion points of elliptic curves over cyclotomic fields (JAPANESE)
数理科学研究科所属以外の方は、オンラインでのご参加をお願いいたします。
松田 光智 氏 (東京大学大学院数理科学研究科)
Torsion points of elliptic curves over cyclotomic fields (JAPANESE)
[ 講演概要 ]
By Mordell--Weil theorem, the Mordell--Weil groups of elliptic curves over number fields are finitely generated, and in particular their torsion subgroups are finite. For a fixed elliptic curve, it is easy to compute its torsion subgroups. Conversely using modular curves, we can study the possible torsion subgroups of elliptic curves. More precisely, the existence of an elliptic curve with certain torsion points is essentially equivalent to the existence of certain rational points of a modular curve. In this talk, in order to study the rational points of modular curves over cyclotomic fields, we compute the Mordell--Weil ranks of their Jacobian varieties over cyclotomic fields.
By Mordell--Weil theorem, the Mordell--Weil groups of elliptic curves over number fields are finitely generated, and in particular their torsion subgroups are finite. For a fixed elliptic curve, it is easy to compute its torsion subgroups. Conversely using modular curves, we can study the possible torsion subgroups of elliptic curves. More precisely, the existence of an elliptic curve with certain torsion points is essentially equivalent to the existence of certain rational points of a modular curve. In this talk, in order to study the rational points of modular curves over cyclotomic fields, we compute the Mordell--Weil ranks of their Jacobian varieties over cyclotomic fields.