代数学コロキウム
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2022年04月20日(水)
17:00-18:00 ハイブリッド開催
数理科学研究科所属以外の方は、オンラインでのご参加をお願いいたします。
王 沛鐸 氏 (東京大学大学院数理科学研究科)
On generalized Fuchs theorem over p-adic polyannuli (ENGLISH)
数理科学研究科所属以外の方は、オンラインでのご参加をお願いいたします。
王 沛鐸 氏 (東京大学大学院数理科学研究科)
On generalized Fuchs theorem over p-adic polyannuli (ENGLISH)
[ 講演概要 ]
In this talk, we study finite projective differential modules on p-adic polyannuli satisfying the Robba condition. Christol and Mebkhout proved the decomposition theorem (the p-adic Fuchs theorem) of such differential modules on one dimensional p-adic annuli under certain non-Liouvilleness assumption and Gachets generalized it to higher dimensional cases. On the other hand, Kedlaya proved a generalization of the p-adic Fuchs theorem in one dimensional case. We prove Kedlaya's generalized version of p-adic Fuchs theorem in higher dimensional cases.
In this talk, we study finite projective differential modules on p-adic polyannuli satisfying the Robba condition. Christol and Mebkhout proved the decomposition theorem (the p-adic Fuchs theorem) of such differential modules on one dimensional p-adic annuli under certain non-Liouvilleness assumption and Gachets generalized it to higher dimensional cases. On the other hand, Kedlaya proved a generalization of the p-adic Fuchs theorem in one dimensional case. We prove Kedlaya's generalized version of p-adic Fuchs theorem in higher dimensional cases.