代数学コロキウム
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2021年11月24日(水)
17:00-18:00 オンライン開催
小原 和馬 氏 (東京大学大学院数理科学研究科)
On the formal degree conjecture for non-singular supercuspidal representations (Japanese)
小原 和馬 氏 (東京大学大学院数理科学研究科)
On the formal degree conjecture for non-singular supercuspidal representations (Japanese)
[ 講演概要 ]
We prove the formal degree conjecture for non-singular supercuspidal representations based on Schwein's work proving the formal degree conjecture for regular supercuspidal representations. The main difference between our work and Schwein's work is that in non-singular case, the Deligne--Lusztig representations can be reducible, and the $S$-groups are not necessarily abelian. Therefore, we have to compare the dimensions of irreducible constituents of the Deligne--Lusztig representations and the dimensions of irreducible representations of $S$-groups.
We prove the formal degree conjecture for non-singular supercuspidal representations based on Schwein's work proving the formal degree conjecture for regular supercuspidal representations. The main difference between our work and Schwein's work is that in non-singular case, the Deligne--Lusztig representations can be reducible, and the $S$-groups are not necessarily abelian. Therefore, we have to compare the dimensions of irreducible constituents of the Deligne--Lusztig representations and the dimensions of irreducible representations of $S$-groups.