代数学コロキウム
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2008年11月26日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
平田典子 氏 (日本大学理工学部)
Lang's Observation in Diophantine Problems
平田典子 氏 (日本大学理工学部)
Lang's Observation in Diophantine Problems
[ 講演概要 ]
In 1964, Serge Lang suggested the following problem, which reads now as follows:
Let $E$ be an elliptic curve defined over a number field $K$, and $\\varphi$ be a rational function on $E$. Then, for every point $P\\in E(K)$ where $\\varphi$ does not vanish at $P$, the logarithms of a norm of $\\varphi(P)$ is at worst linear in the logarithms of the Neron-Tate height of the point $P$.
We give a simultaneous Diophantine approximation for linear forms in elliptic logarithms which actually implies this conjecture. We also present Lang's observations in Diophantine problems.
In 1964, Serge Lang suggested the following problem, which reads now as follows:
Let $E$ be an elliptic curve defined over a number field $K$, and $\\varphi$ be a rational function on $E$. Then, for every point $P\\in E(K)$ where $\\varphi$ does not vanish at $P$, the logarithms of a norm of $\\varphi(P)$ is at worst linear in the logarithms of the Neron-Tate height of the point $P$.
We give a simultaneous Diophantine approximation for linear forms in elliptic logarithms which actually implies this conjecture. We also present Lang's observations in Diophantine problems.