応用解析セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 木曜日 16:00~17:30 数理科学研究科棟(駒場) 002号室 |
---|---|
担当者 | 石毛 和弘 |
2008年05月15日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
小磯 深幸 氏 (奈良女子大学理学部数学教室)
非等方的平均曲率一定曲面の安定性と一意性について
( Stability and uniqueness for surfaces with constant anisotropic mean curvature)
小磯 深幸 氏 (奈良女子大学理学部数学教室)
非等方的平均曲率一定曲面の安定性と一意性について
( Stability and uniqueness for surfaces with constant anisotropic mean curvature)
[ 講演概要 ]
曲面の非等方的表面エネルギーは,法線方向に依存する関数の曲面上での積分として
定義され,結晶やある種の液晶のエネルギーの数学的モデルを与える.曲面が囲む体積
を保つ変分に対する非等方的表面エネルギーの臨界点を非等方的平均曲率一定曲
面(CAMC曲面)という.CAMC曲面が安定であるとは,対応する変分問題の第2変分が非負で
あるときをいう.したがって,エネルギー極小解は安定である.
本講演では,与えられた平行な二平面上に自由境界を持つ曲面全体の中での,囲む体
積一定の条件のもとでの非等方的表面エネルギーと境界での濡れエネルギーの和の臨
界点について論じる.エネルギー汎関数に対するある自然な仮定のもとで,安定解の存
在と一意性を示し,その幾何学的性質を決定する.
曲面の非等方的表面エネルギーは,法線方向に依存する関数の曲面上での積分として
定義され,結晶やある種の液晶のエネルギーの数学的モデルを与える.曲面が囲む体積
を保つ変分に対する非等方的表面エネルギーの臨界点を非等方的平均曲率一定曲
面(CAMC曲面)という.CAMC曲面が安定であるとは,対応する変分問題の第2変分が非負で
あるときをいう.したがって,エネルギー極小解は安定である.
本講演では,与えられた平行な二平面上に自由境界を持つ曲面全体の中での,囲む体
積一定の条件のもとでの非等方的表面エネルギーと境界での濡れエネルギーの和の臨
界点について論じる.エネルギー汎関数に対するある自然な仮定のもとで,安定解の存
在と一意性を示し,その幾何学的性質を決定する.