Processing math: 100%

解析学火曜セミナー

過去の記録 ~05/20次回の予定今後の予定 05/21~

開催情報 火曜日 16:00~17:30 数理科学研究科棟(駒場) 156号室
担当者 石毛 和弘, 坂井 秀隆, 伊藤 健一
セミナーURL https://www.ms.u-tokyo.ac.jp/seminar/analysis/

2024年12月24日(火)

16:00-17:30   数理科学研究科棟(駒場) 128号室
対面・オンラインハイブリッド開催,場所にご注意ください
筧知之 氏 (筑波大学)
Snapshot problems for the wave equation and for the Euler-Poisson-Darboux equation (Japanese)
[ 講演概要 ]
In this talk, we deal with snapshot problems for the wave equation and for the Euler-Poisson-Darboux equation. For simplicity, let us consider the wave equation 2tuΔu=0 on Rn with the condition u|t=t1=f1,,u|t=tm=fm. It is natural to ask when the above equation has a unique solution. We call the above problem the snapshot problem for the wave equation, and the set of m functions {f1,,fm} the snapshot data. Roughly speaking, one of our main results is as follows.

Theorem. We assume that m=3 and (t3t1)/(t2t1) is irrational and not a Liouville number. In addition, we assume a certain compatibility condition on the snapshot data {f1,f2,f3}. Then the snapshot problem for the wave equation has a unique solution.

We also consider a similar snapshot problem for the Euler-Poisson-Darboux equation. This is a joint work with Jens Christensen, Fulton Gonzalez, and Jue Wang.
[ 参考URL ]
https://forms.gle/2otzqXYVD6DqM11S8