代数幾何学セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 金曜日 13:30~15:00 数理科学研究科棟(駒場) 118号室 |
---|---|
担当者 | 權業 善範、河上 龍郎 、榎園 誠 |
2021年05月26日(水)
15:00-16:00 数理科学研究科棟(駒場) zoom号室
京大と共催
山口樹 氏 (東大数理)
Multiplier ideals via ultraproducts (日本語)
京大と共催
山口樹 氏 (東大数理)
Multiplier ideals via ultraproducts (日本語)
[ 講演概要 ]
正標数の可換環と複素数体上の可換環の性質を比較する方法の一つにultraproductを用いた手法がある. このultraproductは超準解析において超実数の構成などに用いられているものである. これを可換環論へ応用する研究としてSchoutensによるnon-standard hullがある. この手法は等標数0の局所環に対するbig Cohen-Macaulay 代数の構成などにも応用がある. 彼の研究の一つに川又対数端末特異点のultraproductを用いた特徴付けがある. 本講演では, この結果の一般化として乗数イデアルがultraproductを用いて記述できることを説明する.
正標数の可換環と複素数体上の可換環の性質を比較する方法の一つにultraproductを用いた手法がある. このultraproductは超準解析において超実数の構成などに用いられているものである. これを可換環論へ応用する研究としてSchoutensによるnon-standard hullがある. この手法は等標数0の局所環に対するbig Cohen-Macaulay 代数の構成などにも応用がある. 彼の研究の一つに川又対数端末特異点のultraproductを用いた特徴付けがある. 本講演では, この結果の一般化として乗数イデアルがultraproductを用いて記述できることを説明する.