代数幾何学セミナー
過去の記録 ~05/02|次回の予定|今後の予定 05/03~
開催情報 | 金曜日 13:30~15:00 数理科学研究科棟(駒場) 118号室 |
---|---|
担当者 | 權業 善範、河上 龍郎 、榎園 誠 |
2018年04月24日(火)
15:30-17:00 数理科学研究科棟(駒場) 122号室
陳韋中 氏 (東大数理)
BIRATIONAL BOUNDEDNESS OF RATIONALLY CONNECTED CALABI–YAU 3-FOLDS
(English)
陳韋中 氏 (東大数理)
BIRATIONAL BOUNDEDNESS OF RATIONALLY CONNECTED CALABI–YAU 3-FOLDS
(English)
[ 講演概要 ]
Firstly, we show that rationally connected Calabi–Yau 3- folds with kawamata log terminal (klt) singularities form a birationally bounded family, or more generally, rationally connected 3-folds of ε-CY type form a birationally bounded family for ε > 0. Then we focus on ε-lc log Calabi–Yau pairs (X, B) such that coefficients of B are bounded from below away from zero. We show that such pairs are log bounded modulo flops. As a consequence, we show that rationally connected klt Calabi–Yau 3-folds with mld bounding away from 1 are bounded modulo flops.
Firstly, we show that rationally connected Calabi–Yau 3- folds with kawamata log terminal (klt) singularities form a birationally bounded family, or more generally, rationally connected 3-folds of ε-CY type form a birationally bounded family for ε > 0. Then we focus on ε-lc log Calabi–Yau pairs (X, B) such that coefficients of B are bounded from below away from zero. We show that such pairs are log bounded modulo flops. As a consequence, we show that rationally connected klt Calabi–Yau 3-folds with mld bounding away from 1 are bounded modulo flops.