代数学コロキウム
過去の記録 ~03/19|次回の予定|今後の予定 03/20~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2024年10月30日(水)
17:00-18:00 数理科学研究科棟(駒場) 117号室
佐藤匡弥 氏 (東京大学大学院数理科学研究科)
Representability of Hochschild homology in the category of motives with modulus (日本語)
佐藤匡弥 氏 (東京大学大学院数理科学研究科)
Representability of Hochschild homology in the category of motives with modulus (日本語)
[ 講演概要 ]
There is a map from algebraic K-theory to Hochschild homology, called a trace map. This map developed the study of algebraic K-theory. Algebraic K-theory is A^1-invariant on the category of smooth schemes over a field, so the Voevodsky’s motivic homotopy theory is a nice way to study algebraic K-theory. However, Hochschild homology is not A^1-invariant, so Voevodsky’s theory doesn’t capture it. In this talk, we will extend Hochschild homology of schemes to modulus pairs, and it is representable in the category of motives with modulus defined by Kahn-Miyazaki-Saito-Yamazaki.
There is a map from algebraic K-theory to Hochschild homology, called a trace map. This map developed the study of algebraic K-theory. Algebraic K-theory is A^1-invariant on the category of smooth schemes over a field, so the Voevodsky’s motivic homotopy theory is a nice way to study algebraic K-theory. However, Hochschild homology is not A^1-invariant, so Voevodsky’s theory doesn’t capture it. In this talk, we will extend Hochschild homology of schemes to modulus pairs, and it is representable in the category of motives with modulus defined by Kahn-Miyazaki-Saito-Yamazaki.