代数学コロキウム
過去の記録 ~09/10|次回の予定|今後の予定 09/11~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2024年05月15日(水)
17:00-18:00 数理科学研究科棟(駒場) 117号室
高谷悠太 氏 (東京大学大学院数理科学研究科)
Equidimensionality of affine Deligne-Lusztig varieties in mixed characteristic (日本語)
高谷悠太 氏 (東京大学大学院数理科学研究科)
Equidimensionality of affine Deligne-Lusztig varieties in mixed characteristic (日本語)
[ 講演概要 ]
Shimura varieties are of central interest in arithmetic geometry and affine Deligne-Lusztig varieties are closely related to their special fibers. These varieties are group-theoretical objects and can be defined even for non-miniscule local Shimura data. In this talk, I will explain the proof of the equidimensionality of affine Deligne-Lusztig varieties in mixed characteristic.
The main ingredient is a local foliation of affine Deligne-Lusztig varieties in mixed characteristic. In equal characteristic, this local structure was previously introduced by Hartl and Viehmann.
Shimura varieties are of central interest in arithmetic geometry and affine Deligne-Lusztig varieties are closely related to their special fibers. These varieties are group-theoretical objects and can be defined even for non-miniscule local Shimura data. In this talk, I will explain the proof of the equidimensionality of affine Deligne-Lusztig varieties in mixed characteristic.
The main ingredient is a local foliation of affine Deligne-Lusztig varieties in mixed characteristic. In equal characteristic, this local structure was previously introduced by Hartl and Viehmann.