代数学コロキウム
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2023年10月25日(水)
17:00-18:00 数理科学研究科棟(駒場) 117号室
Linus Hamann 氏 (Stanford University)
Geometric Eisenstein Series over the Fargues-Fontaine curve (English)
Linus Hamann 氏 (Stanford University)
Geometric Eisenstein Series over the Fargues-Fontaine curve (English)
[ 講演概要 ]
Geometric Eisenstein series were first studied extensively by Braverman-Gaitsgory, Laumon, and Drinfeld, in the context of function field geometric Langlands. For a Levi subgroup M inside a connected reductive group G, they are functors which send Hecke eigensheaves on the moduli stack of M-bundles to Hecke eigensheaves on the moduli stack of G-bundles via certain relative compactifications of the moduli stack of P-bundles. We will discuss what this theory has to offer in the context of the recent Fargues-Scholze geometric Langlands program. Namely, motivated by the results in the function field setting, we will explicate what the analogous results tell us in this setting of the Fargues-Scholze program, as well as discuss various consequences for the cohmology of local and global Shimura varieties, via the relation between local Shimura varieties and the p-adic shtukas appearing in the Fargues-Scholze program.
Geometric Eisenstein series were first studied extensively by Braverman-Gaitsgory, Laumon, and Drinfeld, in the context of function field geometric Langlands. For a Levi subgroup M inside a connected reductive group G, they are functors which send Hecke eigensheaves on the moduli stack of M-bundles to Hecke eigensheaves on the moduli stack of G-bundles via certain relative compactifications of the moduli stack of P-bundles. We will discuss what this theory has to offer in the context of the recent Fargues-Scholze geometric Langlands program. Namely, motivated by the results in the function field setting, we will explicate what the analogous results tell us in this setting of the Fargues-Scholze program, as well as discuss various consequences for the cohmology of local and global Shimura varieties, via the relation between local Shimura varieties and the p-adic shtukas appearing in the Fargues-Scholze program.