代数幾何学セミナー

過去の記録 ~04/13次回の予定今後の予定 04/14~

開催情報 金曜日 13:30~15:00 数理科学研究科棟(駒場) ハイブリッド開催/117号室
担当者 權業 善範、中村 勇哉、田中 公

2023年07月21日(金)

13:30-15:00   数理科学研究科棟(駒場) ハイブリッド開催/056号室
普段と部屋が異なります。
江尻 祥 氏 (大阪公立大学)
The Demailly--Peternell--Schneider conjecture is true in positive characteristic
[ 講演概要 ]
In 1993, Demailly, Peternell and Schneider conjectured that the Albanese morphism of a compact K\"{a}hler manifold with nef anti-canonical divisor is surjective. For smooth projective varieties of characteristic zero, the conjecture was verified by Zhang in 1996. In positive characteristic, the conjecture was solved under the assumption that the geometric generic fiber F of the Albanese morphism has only mild singularities. However, F may have bad singularities even if we restrict ourselves to the case when the anti-canonical divisor is nef. In this talk, we prove the conjecture in positive characteristic without any extra assumption. We also discuss properties of the Albanese morphism, such as flatness or local isotriviality. This talk is based on joint work with Zsolt Patakfalvi.