応用解析セミナー
過去の記録 ~09/19|次回の予定|今後の予定 09/20~
開催情報 | 木曜日 16:00~17:30 数理科学研究科棟(駒場) 002号室 |
---|---|
担当者 | 石毛 和弘 |
2023年05月18日(木)
16:00-17:30 数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催
Junha Kim 氏 (Korea Institute for Advanced Study)
On the wellposedness of generalized SQG equation in a half-plane (English)
https://forms.gle/Cezz3sicY7izDPfq8
対面・オンラインハイブリッド開催
Junha Kim 氏 (Korea Institute for Advanced Study)
On the wellposedness of generalized SQG equation in a half-plane (English)
[ 講演概要 ]
In this talk, we investigate classical solutions to the $\alpha$-SQG in a half-plane, which reduces to the 2D Euler equations and SQG equation for $\alpha=0$ and $\alpha=1$, respectively. When $\alpha \in (0,1/2]$, we establish that $\alpha$-SQG is well-posed in appropriate anisotropic Lipschitz spaces. Moreover, we prove that every solution with smooth initial data that is compactly supported and not vanishing on the boundary has infinite $C^{\beta}$-norm instantaneously where $\beta > 1-\alpha$. In the case of $\alpha \in (1/2,1]$, we show the nonexistence of solutions in $C^{\alpha}$. This is a joint work with In-Jee Jeong and Yao Yao.
[ 参考URL ]In this talk, we investigate classical solutions to the $\alpha$-SQG in a half-plane, which reduces to the 2D Euler equations and SQG equation for $\alpha=0$ and $\alpha=1$, respectively. When $\alpha \in (0,1/2]$, we establish that $\alpha$-SQG is well-posed in appropriate anisotropic Lipschitz spaces. Moreover, we prove that every solution with smooth initial data that is compactly supported and not vanishing on the boundary has infinite $C^{\beta}$-norm instantaneously where $\beta > 1-\alpha$. In the case of $\alpha \in (1/2,1]$, we show the nonexistence of solutions in $C^{\alpha}$. This is a joint work with In-Jee Jeong and Yao Yao.
https://forms.gle/Cezz3sicY7izDPfq8