代数幾何学セミナー
過去の記録 ~09/14|次回の予定|今後の予定 09/15~
開催情報 | 金曜日 13:30~15:00 数理科学研究科棟(駒場) ハイブリッド開催/117号室 |
---|---|
担当者 | 權業 善範、中村 勇哉、田中 公 |
2023年01月27日(金)
13:00-14:30 数理科学研究科棟(駒場) 056号室
全4回:1/27 (金) 13:00―14:30, 数理科学研究科056室 2/6 (月) 13:00―14:30, 数理科学研究科123室, 2/17 (金) 10:00―11:30, 数理科学研究科123室, 2/20 (月) 10:00ー11:30, 数理科学研究科056室
Chenyang Xu 氏 (プリンストン大学)
K-stability of Fano varieties (English)
全4回:1/27 (金) 13:00―14:30, 数理科学研究科056室 2/6 (月) 13:00―14:30, 数理科学研究科123室, 2/17 (金) 10:00―11:30, 数理科学研究科123室, 2/20 (月) 10:00ー11:30, 数理科学研究科056室
Chenyang Xu 氏 (プリンストン大学)
K-stability of Fano varieties (English)
[ 講演概要 ]
The notion of K-stability of Fano varieties was first introduced to characterize the existence of Kahler-Einstein metric. Recently, a purely algebro-geometric theory has been developed and it has yielded many striking results, such as the solution of the Yau-Tian-Donaldson Conjecture for all Fano varieties, as well as the construction of a projective moduli scheme, called K-moduli, parametrizing K-polystable Fano varieties.
In this lecture series, I will survey the recent progress. The first two lectures will be devoted to explain the evolution of algebraic geometer’s understanding of various aspects of the notion of K-stability. The Lecture 3 and 4 will be devoted to discuss the construction of the K-moduli space.
The notion of K-stability of Fano varieties was first introduced to characterize the existence of Kahler-Einstein metric. Recently, a purely algebro-geometric theory has been developed and it has yielded many striking results, such as the solution of the Yau-Tian-Donaldson Conjecture for all Fano varieties, as well as the construction of a projective moduli scheme, called K-moduli, parametrizing K-polystable Fano varieties.
In this lecture series, I will survey the recent progress. The first two lectures will be devoted to explain the evolution of algebraic geometer’s understanding of various aspects of the notion of K-stability. The Lecture 3 and 4 will be devoted to discuss the construction of the K-moduli space.