代数学コロキウム
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2022年11月30日(水)
17:00-18:00 ハイブリッド開催
Xinyao Zhang 氏 (東京大学大学院数理科学研究科)
The modularity of elliptic curves over some number fields (English)
Xinyao Zhang 氏 (東京大学大学院数理科学研究科)
The modularity of elliptic curves over some number fields (English)
[ 講演概要 ]
As a non-trivial case of the Langlands reciprocity conjecture, the modularity of elliptic curves always intrigues number theorists, and a famous result was proved for semistable elliptic curves over \mathbb{Q} by Andrew Wiles, implying Fermat's Last Theorem. In recent years, many new results have been proved using sufficiently powerful modularity lifting theorems. For instance, Thorne proved that elliptic curves over the cyclotomic \mathbb{Z}_p-extension of \mathbb{Q} are modular. In this talk, I will sketch some of these results and try to give a new one that elliptic curves over the cyclotomic \mathbb{Z}_p-extension of a real quadratic field are modular under some technical assumptions.
As a non-trivial case of the Langlands reciprocity conjecture, the modularity of elliptic curves always intrigues number theorists, and a famous result was proved for semistable elliptic curves over \mathbb{Q} by Andrew Wiles, implying Fermat's Last Theorem. In recent years, many new results have been proved using sufficiently powerful modularity lifting theorems. For instance, Thorne proved that elliptic curves over the cyclotomic \mathbb{Z}_p-extension of \mathbb{Q} are modular. In this talk, I will sketch some of these results and try to give a new one that elliptic curves over the cyclotomic \mathbb{Z}_p-extension of a real quadratic field are modular under some technical assumptions.