代数幾何学セミナー
過去の記録 ~01/29|次回の予定|今後の予定 01/30~
開催情報 | 火曜日 10:30~11:30 or 12:00 数理科学研究科棟(駒場) ハイブリッド開催/002号室 |
---|---|
担当者 | 權業 善範・中村 勇哉・田中公 |
2022年11月15日(火)
10:30-12:00 数理科学研究科棟(駒場) ハイブリッド開催/002号室
張 繼剛 氏 (NTU/東大数理)
Positivity of anticanonical divisors in algebraic fibre spaces (日本語)
張 繼剛 氏 (NTU/東大数理)
Positivity of anticanonical divisors in algebraic fibre spaces (日本語)
[ 講演概要 ]
It is known that the positivity of the anti-canonical divisor is an important property that is closely related to the geometric structure of a variety. Given an algebraic fibre space f : X → Y between normal projective varieties with mild singularities, and let F be a general fibre of f. In this talk, we will introduce results relating the positivity of −KX and −KY under some conditions on the asymptotic base loci of −KX. In particular, we will obtain an inequality between the anti-canonical Iitaka dimensions κ(X, −KX) ≤ κ(F, −KF ) + κ(Y, −KY ) under the assumption that the stable base locus B(−KX) does not dominant over Y .
It is known that the positivity of the anti-canonical divisor is an important property that is closely related to the geometric structure of a variety. Given an algebraic fibre space f : X → Y between normal projective varieties with mild singularities, and let F be a general fibre of f. In this talk, we will introduce results relating the positivity of −KX and −KY under some conditions on the asymptotic base loci of −KX. In particular, we will obtain an inequality between the anti-canonical Iitaka dimensions κ(X, −KX) ≤ κ(F, −KF ) + κ(Y, −KY ) under the assumption that the stable base locus B(−KX) does not dominant over Y .