解析学火曜セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 火曜日 16:00~17:30 数理科学研究科棟(駒場) 156号室 |
---|---|
担当者 | 石毛 和弘, 坂井 秀隆, 伊藤 健一 |
セミナーURL | https://www.ms.u-tokyo.ac.jp/seminar/analysis/ |
2022年11月29日(火)
16:00-17:30 数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催
滝本和広 氏 (広島大学)
Bernstein type theorem for the parabolic 2-Hessian equation under weaker assumptions (Japanese)
https://forms.gle/93YQ9C6DGYt5Vjuf7
対面・オンラインハイブリッド開催
滝本和広 氏 (広島大学)
Bernstein type theorem for the parabolic 2-Hessian equation under weaker assumptions (Japanese)
[ 講演概要 ]
In the early twentieth century, Bernstein proved that a minimal surface which can be expressed as the graph of a function defined in $\mathbb{R}^2$ must be a plane. For Monge-Ampère equation, it is known that a convex solution to $\det D^2 u=1$ in $\mathbb{R}^n$ must be a quadratic polynomial. Such kind of theorems, which we call Bernstein type theorems in this talk, have been extensively studied for various PDEs. For the parabolic $k$-Hessian equation, Bernstein type theorem has been proved by Nakamori and Takimoto (2015, 2016) under the convexity and some growth assumptions on the solution. In this talk, we shall obtain Bernstein type theorem for the parabolic 2-Hessian equation under weaker assumptions.
[ 参考URL ]In the early twentieth century, Bernstein proved that a minimal surface which can be expressed as the graph of a function defined in $\mathbb{R}^2$ must be a plane. For Monge-Ampère equation, it is known that a convex solution to $\det D^2 u=1$ in $\mathbb{R}^n$ must be a quadratic polynomial. Such kind of theorems, which we call Bernstein type theorems in this talk, have been extensively studied for various PDEs. For the parabolic $k$-Hessian equation, Bernstein type theorem has been proved by Nakamori and Takimoto (2015, 2016) under the convexity and some growth assumptions on the solution. In this talk, we shall obtain Bernstein type theorem for the parabolic 2-Hessian equation under weaker assumptions.
https://forms.gle/93YQ9C6DGYt5Vjuf7