代数学コロキウム
過去の記録 ~09/18|次回の予定|今後の予定 09/19~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2022年07月20日(水)
15:30-18:00 ハイブリッド開催
数理科学研究科所属以外の方は、オンラインでのご参加をお願いいたします。
清水 康司 氏 (UC Berkeley) 15:30-16:30
Completed prismatic F-crystals and crystalline local systems (ENGLISH)
Twisted differential operators in several variables (ENGLISH)
数理科学研究科所属以外の方は、オンラインでのご参加をお願いいたします。
清水 康司 氏 (UC Berkeley) 15:30-16:30
Completed prismatic F-crystals and crystalline local systems (ENGLISH)
[ 講演概要 ]
Bhatt and Scholze introduced the absolute prismatic site of a p-adic ring and proved the equivalence of categories between prismatic F-crystals and lattices in crystalline representations in the CDVR case with perfect residue field. We will define a wider category of completed prismatic F-crystals in the relative case and explain its relation to the category of crystalline local systems. This is joint work with Heng Du, Tong Liu, and Yong Suk Moon.
Pierre Houedry 氏 (Université de Caen) 17:00-18:00Bhatt and Scholze introduced the absolute prismatic site of a p-adic ring and proved the equivalence of categories between prismatic F-crystals and lattices in crystalline representations in the CDVR case with perfect residue field. We will define a wider category of completed prismatic F-crystals in the relative case and explain its relation to the category of crystalline local systems. This is joint work with Heng Du, Tong Liu, and Yong Suk Moon.
Twisted differential operators in several variables (ENGLISH)
[ 講演概要 ]
The aim of my presentation is to give an overview of the results I obtained during the first year of my PhD. The theory of $q$-differences equations appeared a long time ago with the Birkhoff's work. It is well understood in the complex setting. In 2004, Lucia Di Vizio and Yves André, in the paper $q$-differences and p-adic local monodromy, gave an equivalence between certain type of $q$-differences equations and a certain type of classical differential equations in the p-adic setting. Recently, Adolfo Quiros, Bernard Le Stum and Michel Gros have been working on a generalization of this result not looking only for $q$-differences equations but also twisted equations in general. The framework that they develop is working for equations in one variable. The goal of my thesis is to generalize those results in several variables.
The aim of my presentation is to give an overview of the results I obtained during the first year of my PhD. The theory of $q$-differences equations appeared a long time ago with the Birkhoff's work. It is well understood in the complex setting. In 2004, Lucia Di Vizio and Yves André, in the paper $q$-differences and p-adic local monodromy, gave an equivalence between certain type of $q$-differences equations and a certain type of classical differential equations in the p-adic setting. Recently, Adolfo Quiros, Bernard Le Stum and Michel Gros have been working on a generalization of this result not looking only for $q$-differences equations but also twisted equations in general. The framework that they develop is working for equations in one variable. The goal of my thesis is to generalize those results in several variables.