代数学コロキウム

過去の記録 ~02/07次回の予定今後の予定 02/08~

開催情報 水曜日 17:00~18:00 数理科学研究科棟(駒場) 056号室
担当者 今井 直毅, 三枝 洋一

2022年05月11日(水)

17:00-18:00   ハイブリッド開催
数理科学研究科所属以外の方は、オンラインでのご参加をお願いいたします。
Joseph Muller 氏 (東京大学大学院数理科学研究科)
Cohomology of the unramified PEL unitary Rapoport-Zink space of signature $(1,n-1)$ (ENGLISH)
[ 講演概要 ]
Rapoport-Zink (RZ) spaces are moduli spaces which classify the deformations of a $p$-divisible group with additional structures. It is equipped with compatible actions of $p$-adic and Galois groups, and their cohomology is believed to play a role in the local Langlands program. So far, the cohomology of RZ spaces is entirely known only in the cases of the Lubin-Tate tower and of the Drinfeld space ; in particular both of them are RZ spaces of EL type. In this talk, we consider the unramified PEL unitary RZ space with signature $(1,n-1)$. In 2011, Vollaard and Wedhorn proved that it is stratified by generalized Deligne-Lusztig varieties, whose incidence relations mimic the combinatorics of the Bruhat-Tits building of a unitary group. We compute the cohomology of these strata and we draw some consequences on the cohomology of the RZ space. When $n = 3, 4$ we deduce
an automorphic description of the cohomology of the basic stratum in the corresponding Shimura variety via p-adic uniformization.