代数学コロキウム
過去の記録 ~10/09|次回の予定|今後の予定 10/10~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2022年04月27日(水)
17:00-18:00 ハイブリッド開催
数理科学研究科所属以外の方は、オンラインでのご参加をお願いいたします。
山本 修司 氏 (東京大学大学院数理科学研究科)
The Kaneko-Zagier conjecture on finite and symmetric multiple zeta values for general integer indices (JAPANESE)
数理科学研究科所属以外の方は、オンラインでのご参加をお願いいたします。
山本 修司 氏 (東京大学大学院数理科学研究科)
The Kaneko-Zagier conjecture on finite and symmetric multiple zeta values for general integer indices (JAPANESE)
[ 講演概要 ]
Kaneko and Zagier introduced two variants of multiple zeta values, which we call A-MZVs and S-MZVs, and conjectured that the algebraic structures of them are isomorphic. While these values were originally defined for positive integer (multi-)indices, recently, Komori extended the definition of S-MZVs to general integer indices. Since A-MZVs can also be defined for general integers, Komori's work suggests a generalization of the Kaneko-Zagier conjecture, from positive to general integers. In this talk, we will show how this generalization is reduced to the original conjecture. This is a joint work with Masataka Ono.
Kaneko and Zagier introduced two variants of multiple zeta values, which we call A-MZVs and S-MZVs, and conjectured that the algebraic structures of them are isomorphic. While these values were originally defined for positive integer (multi-)indices, recently, Komori extended the definition of S-MZVs to general integer indices. Since A-MZVs can also be defined for general integers, Komori's work suggests a generalization of the Kaneko-Zagier conjecture, from positive to general integers. In this talk, we will show how this generalization is reduced to the original conjecture. This is a joint work with Masataka Ono.